
Technical Report

AD-A264 375 CMU/SEI-92-TR-32i~i li , •ESC-T"R-92-032

... :-- Software Engineering Institute

Performance and Ada Style
for the AN/BSY-2 Submarine
Combat System

Neal Altman
Patrick Donohoe DTIC

December 1992 ELECTE

| I MAYI 8 199313

M 4

Technical Report

CMU/SEI-92-TR-32
ESC-TR-92-032
December 1992

Performance and Ada Style for the
AN/BSY-2 Submarine Combat System

Neal Altman
Patrick Donohoe

Real-Time Embedded Systems Testbed (REST) Project

~Accesio' ior

.NTIS CR4& .
DTIC TAb E

By

D 's t 'tb u l io n I

Avadability Codes

AvIlI and forODst Svecwl

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright @ 1992 by Carnegie Mellon University.

This dccument is available through the Defense Technical Information Center DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Techn.cal Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue. Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder

Table of Contents

Introduction 1
1.1 BSY-2 Performance Questions 2
1.2 Performance Questions List 2

2 Performance Reports 3
2.1 Background 3

2.1.1 BSY-2 Style Guide 3
2.1.2 Benchmark Suites 3
2.1.3 Test Environment 4
2.1.4 Accuracy of Data and Results 4
2.1.5 Question Format 5

2.2 Arrays 7
2.3 Check SuppIession 25
2.4 Data Location 31
2.5 Enumeration Types 43
2.6 Exceptions 47
2.7 Generic Units 55
2.8 Inlining of Procedures 63
2.9 Logical Tests 69
2.10 Loop Efficiency 77
2.11 Module Size 85
2.12 Optimization Options 99
2.13 Precision 157
2.14 Private Types 163
2.15 Records 165
2.16 Rendezvous 169

Appendix A BSY-2 Performance Questions 181
A.1 Questions from the SSP Ada Style Guide 181
A.2 SEI Additional Questions 183
A.3 Combined Questions List 187
A.4 Editing the Questions List 192

Appendix B Benchmark Sources 195
B.1 The Ada Evaluation System 195
B.2 The Ada Compiler Evaluation Capability 195
B.3 The PIWG Benchmarks 196

Appendix C Question Format and Instructions 197

C.1 Blank Question Entry 197

C.2 Instructions for Filling in Questions 197

References 205

Index 207

List of Figures

Figure 2-1: Summary Graph of AES Tests TI01 and T102 32
Figure 2-2: Graph of AES Test TIO0 Results 33
Figure 2-3: Graph of AES Test T102 Results 33
Figure 2-4: Graph of PIWG B Test Results 103

CMU/SEI-92-TR-32

Jm mmim lA

iv CMUISEI-92-TR-32

List of Tables

Table 1: Generated Code Sizes AES Test T007 27

Table 2: Execution Times (in Seconds) for PIWG B Tests at Various
Optimization Levels 102

Table 3: ACEC Floating-Point Results 159

Table 4: ACEC Integer Results 161

CMU/SEI-92-TR-32

vi CMU/SEI-92-TR-32

Performance and Ada Style for the AN/BSY-2
Submarine Combat System

Abstract: The performance of programs prepared with the Verdix Ada Development
System (VADS) was measured and analyzed for programmers preparing a large Ada
system. Using standard Ada benchmark suites (ACEC, AES and PIWG) and a
representative Motorola 68030 target system as a source of data, questions were
posed and answered about programming alternatives, based on the measured
performance of the compiler. The questions included in the report were extracted from
a much larger set selected from an analysis of the BSY-2 Style Guide and augmented
with additional questions suggested by SEI experience. The derivation of the questions
and the template for the performance analysis sections are presented as appendices.

1 Introduction

The U. S. Navy's AN/BSY-2 Submarine Combat System will use the Ada programming language for the
majority of its software. The coding style used in preparing this software will affect the readability, test-
ability and maintainability of the code during the software life cycle. Programming style can also affect
the performance of the software in operation. The emphasis of this report is to describe the effect of Ada
coding style on the execution performance of Ada programs. Impact on memory utilization is a second-
ary concern but is mentioned when appropriate.

This report has been organized as a series of questions. Each question provides information about pro-
gramming choices. In developing a software system, implementors make a large number of choices
about the design and coding of software. Because software is inherently flexible and Ada provides a
large number of alternatives to the programmer, the correct or most efficient choice among the alterna-
tives is not always known.

This report emphasizes the performance consequences of Ada coding choices, rather than character-
izing Ada's performance or comparing Ada to other computer programming languages. It abstracts rel-
evant information from Ada benchmark suites and presents those data and a series of conclusions.
Performance is, of course, only one aspect to be considered in making programming choices. The
code's consistency, clarity, maintainability, plus other factors, must also be considered. This report is
intendEJ to inform rather than dictate. In particular, the intent is to allow rational choices to be made with
knowledge of the performance consequences, rather than suggesting that performance is or should be
the overriding consideration. Often the differences in performance between alternative choices are
shown to be negligible.

While the questions asked by this report are intended to be of general interest to Ada users, the con-
clusions are only applicable to the tested hardware and software configurations specified in the individ-
ual entries. The primary source of performance information is a configuration using the Verdix Ada
compiler s3lected for BSY-2 and commercial-off-the-shelf hardware used for the initial prototype of the
BSY-2 system. Where appropriate, conclusions are also drawn from other systems and the work of oth-
er government agencies. However, it should be emphasized that these results are specific recommen-
dations for BSY-2 and are not universally applicable to all Ada systems or hardware platforms. As new

CMU/SEI-92-TR-32

system hardware aid softw-jare are deployed, all relevant tests must be re-executed and the results ex-
amined to ensure the recommendations remain current.

1.1 BSY-2 Perfo,"uinance Questions
This section presert,,, toie performance questions addressed in this report. Appendix A on page 181 de-
scribes how the list of questions was selected. Performance information for each question is provided
in the body of the report (Performance Reports on page 3).

" .2 Performance Questions List
This list is organized alphabetically by topic.

1. Arrays: What are the performance characteristics of array aggregate assignments
and corresponding loop constructs?

2. Check Suppression: How does performance change when checks are turned off?

3. Data Location: What is the performance effect of declaring data locally or outside
the executing scope?

4. Enumeration Types: How does the performance of operations on objects of an
enumeration type compare with the performance of an equivalent representation
using strings or numeric values?

5. Exceptions: What are the performance consequences of providing exception
handling capabilities?

6. Generic Units: What is the comparative performance of generic and nongeneric
units?

7. Inlmning of Procedures: What is the effect of inlining procedures and generic
procedures?

8. Logical Tests: What are the performance tradeoffs between the case statement

and If stalement?

9. Loop Efficiency: Do different loop constructs vary in efficiency?

10. Module Size: Is the performance of a program divided into modules different from
a monolithic design?

11. Optimization Options: What are the effects of different optimization levels?

12. Precision: What are the performance differences between single-precision and
extended-precision numeric operations?

13. Private Types: Is there a difference in performance between operations on objects
of a private type and objects of a visible type?

14, Records: What is the performance of the various methods for assigning values to
record objects?

15. Rendezvous: What are the performance characteristics of the various kinds of
task rendezvous?

2 CMU/SEI-92-TR-32

2 Performance Reports

This section contains observations based on benchmark tests. Each section opens with a question

about performance, style, and/or features, and an answer to the question plus the detailed data that

support the arnswer. The questions are arranged alphabetically by the key subject.

2.1 Background

The performance reports were developed as a method of presenting interesting results from the ,"ub-

stantial body of data generated by Ada benchmark test suites. Each performance report answers a spe-

cific question and uses data from a selected subset of benchmark tests that specifically address this

question.

Several basic decisions were made about the development of the performance reports:

* The report would focus on choices available to the application programmer.

* The BSY-2 Style Guide would be the primary source of questions.

* Data from the standard Ada benchmark suites would be used, rather than
customized tests.

* Limitations of the current benchmark suites (e.g., missing tests) would be pointed out
as encountered.

2.1.1 BSY-2 Style Guide
The BSY-2 Style Guide is contained in Appendix I of the document "Software Standards and Proce-
dures Manual for the AN/BSY-2 SUBMARINE COMBAT SYSTEM." It lays out coding standards for Ada
programmers and is written to reflect commonly held standards of good programming practice. Howev-
er, it does not address the performance of the resulting Ada code.

In addition to the issues raised by the BSY-2 Style Guide, the report authors decided to include addi-

tional questions to cover issues not raised in the style guide. In preparing these q'jest'ons some con-
sideration was given to including issues that were well addressed by the then current releases of the
standard Ada benchmark suites.

Appendix A on page 181 lists the questions derived from the BSY-2 Style Guide.

2.1.2 Benchmark Suites
Performance data for the report were obtained by use of commonly available benchmark suites. The
suites used for this report are all written in Ada:

PIWG A benchmark suite produced by a volunteer group, the Performance
Issues Working Group of the Special Interest Group for Ada (SIGAda),

CMU/SEI-92-TR-32 3

(a part of the Association for Computing Machinery or ACM). The
PIWG test suite is compact, widely used and available without charge.

ACEC The Ada Compiler Evaluation Capability is a set of benchmark tests

prepared for the Ada Joint Program Office (AJPO) of the U.S. Depart-
ment of Defense. This suite contains a large number of tests and con-

centrates on measuring the execution performance of an Ada system.

AES The Ada Evaluation System is a benchmark suite developed for the

United Kingdom's Ministry of Defence. It covers more features of an

Ada compilation system than the ACEC, but contains fewer execution

performance tests.

The ACEC and AES tests will be merged into a new release of the
ACEC test suite.

Appendix 2 on page 207 presents information on the sources for the benchmark suites.

2.1.3 Test Environment
The individual benchmark tests were compiled using the Verdix Ada Development System (VADS), the

commercial compiler selected for the BSY-2 test environment and executed on a representative target
system. Specifically, a Digital Equipment Corporation clustered microcomputer running the VMS oper-

ating system was used as the host system for compilation and data storage. The target system tested
a 25 MHz MC68030 microprocessor, and was assembled from commercially available components
from Motorola Microsystems.

The MC68030 microprocessor target system was selected to emulate the prototype BSY-2 hardware
environment. Cost considerations precluded obtaining military specification hardware for testing. The
BSY-2 communications network was not emulated or tested for this study.

The host environment used Digital Equipment Corporation's VMS operating system, one of the two host

operating systems used by the BSY-2 development team, hut did nut specifically emulate any BSY-2

host environment. In general, the host environment was not tested for this report.

The Verdix Ada Development System (VADS) compiler was tested using the host and target systems.
The versions of the VADS compiler and run-time system were matched to the version used for BSY-2.

The specifics of the test configuration(s) used are indicated in each performance report.

2.1.4 Accuracy of Data and Results
The benchmark suites used in this report measure and report execution times and, less frequently,

memory sizes for their tests. In general, these times are used for drawing all the conclusions in the in-

dividual performance reports.

Execution times in each of the benchmark suites were collected by use of the standard Ada clock. This
relatively coarse bI, portable timing source requires that the benchmark measure a sufficiently large

4 CMU/SEI-92-TR-32

body of code to ensure accurate results. This is achieved by using a large body of representative state-
ments or the dual loop paradigm. The specific methods vary among the suites. Thus all times reported
in this report represent average (mean) values. The ACEC states that its accuracy is ±5.0% and the
PIWG asserts an accuracy of ±10.0%. The AES documentation does not set a precise limit, but will
mark as "inconsistent" any test where the time for any individual test execution varies by more than 10%
from the average time obtained from five executions of a test.

Due to the methods used in obtaining timing data, none of the standard benchmark suites reflects tne
range of variation at the statement level. Thus the performance data generated by the standard sLites
are not suitable for worst case analysis. The recommendations in this report therefore reflect choices
which should improve average performance.

In several instances, as noted in individual performance reports, errcrs in the benchmark results were
discovered. In other instances, disagreement was noted between the test suites.

2.1.5 Question Format
The individual performance reports use a common format. Instructions for forming and filling out perfor-
mance reports are presented in Appendix A on page 181. In reading the reports, the first three sections
(Question, Summary, and Discussion) provide a summary view of the entire report along with the most
important performance data. The remaining sections desrcribe the test environment and present the rel-
evant data from the benchmark suites. These sections may be read selectively, according to the read-
er's interests.

CMU/SEI-92-TR-32 5

6 CMU(SEI-92.TR-32

2.2 Arrays

Question: What are the performance characteristics of array aggregate assignments and
corresponding loop constructs?

Summary: Array aggregate assignment had the best observed performance. For high performance,
arrays should be declared locally and accessed directly. Suppressing checks provides moderate
performance gains. Packing arrays is particularly effective for Boolean arrays, and generally improves
performance and saves space.

Discussion: Arrays are convenient structures for holding large homogenous bodies of data. The as-
signment, retrieval, and manipulation of array contents, performed many times, affords the programmer
the opportunity to improve runtime performance efficiently by concentrating on small, intensively exe-
cuted sections of code. Similarly, since large arrays consume large amounts of storage, they are natural
targets for representation using compact format. Economy of space and time are not independent char-
acteristics, however, and the interaction may require a compromise.

The spectrum of array formats and the operations performed on them is potentially broad, but the fol-
lowing performance characteristics are considered to be of general interest:

"* What is the performance of various Ada statements for accessing the elements
contained in arrays?

Examples: Array slices, loop constructs.

Results: In order of efficiency: use literal assignment (i.e. one statement per array el-
ement), array aggregates, array assignments, for loops, while loops. Tests were per-
formed for arrays of integers, reals and Boolean. (Note: however the coverage of the
tests was not orthogonal across the data types and used only simple assignments
[Observation 5 on page 21]).

"* How is runtime performance affected by the form of the range specification?

Examples: Constants, attributed ranges, ranges held in variables.

Results: This characteristic was not addressed adequately by the test results avail-
able.

"* How is runtime performance affected by the method used to create the array?

Examples: Static allocation in library unit, within declare block, via new allocator.

Results: The AES test T102 (Observation 2 on page 13) indicates that allocating ar-
rays within the local execution block is more efficient than creating them with a new
operation or defining them within a library unit.

" What are the performance effects of suppressing checks when manipulating arrays.

Examples: pragma SUPPRESS (INDEX-CHECK), pragma SUPPRESS
(RANGE_CHECK).

Results: The ACEC tests perform a number of comparisons between code segments
with and without checking enabled (Observation 3 on page 17). While several of the
tests proved to be incorrect, the valid tests indicate that the compiler optimizes

CMU/SEI-92-TR-32 7

checks for constant indices, that the overhead for checking while multiplying the con-
tents of a single array element in one statement is 9%, and that the overhead for
checking in a statement including references to three elements of the same array is
about 24%.

* What are the performance characteristics of packed vs. unpacked arrays?

Examples: packed vs. unpacked Boolean arrays.

Results: The AES test T102 (Observation 2 on page 13) indicates that a packed rep-
resentation in general does not change or improves runtime performance, with one
observed but trivial exception for a mix of array operations. The tested arrays con-
tained Boolean and character values.

The ACEC tests summarized in Observation 1 indicate that packed Boolean arrays
gain significant runtime performance benefits from packing with the exception of ac-
cessing individual elements (tests ss333 and ss344). It is not clear however if pack-
ing other array types will demonstrate similar decreases in execution time.

The ACEC tests show that packing is effective for arrays of integer (Observation 4
on page 21). Integer types are packed to bytes, but do not span bytes (storage units).
Execution speed is not compared between packed and unpacked integer arrays.

For related information, see the entries on loop performance (page 77) and the effects of suppressing

constraint checks (page 25).

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: ACEC tests of operations on Boolean arrays, particularly the effects of packed vs.
unpacked arrays.

The ACEC examines execution speed for a number of separate Boolean array operations. These tests
show that Boolean arrays generally reduce execution time when packed. The only exception is in ac-
cessing individual array elements, where the packed array required about 30% more time to perform
the assignment.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Reports of "Language Feature Overhead":

"Small Boolean Arrays (unpacked vs packed) =, AND, NOT," page 9

"Small Boolean Arrays (unpacked vs packed) =, AND," page 9

8 CMU/SEI-92-TR-32

"Small Boolean Arrays (unpacked vs packed) /=, AND," page 10

"Small Boolean Arrays (unpacked vs packed) AND," page 10

"Small Boolean Arrays (unpacked vs packed) OR" [tests ss341, ss330], page 10

"Small Boolean Arrays (unpacked vs packed) OR" [tests ss331, ss342], page 11

"Small Boolean Arrays (unpacked vs packed) XOR," page 11

"Small Boolean Arrays (unpacked vs packed) Fetch and Store," page 11

"Small Boolean Arrays (unpacked vs packed) Slice Assignment," page 11

"Small Boolean Arrays (unpacked vs packed) - Conversion," page 12

"Small Boolean Arrays (unpacked vs packed) - Fetch From Array," page 12

"Large Boolean Arrays (unpacked vs packed) AND" [tests ss351, ss3481, page 12

"Large Boolean Arrays (unpacked vs packed) AND, NOT, OR, XOR1, page 13

"Large Boolean Arrays (unpacked vs packed) AND" [tests ss350, ss3531, page 13

The SSA report frequently refers to tests of "16 bit" Boolean arrays. The test code does not force any
representation, so the actual array layout used is set by the compiler defaults.

Language Feature Overhead

Small Boolean Arrays (unpacked vs packed) -, AND, NOT

Test Execution Bar Similar
Name Time Chart Groups

ss337 5.70 ***

ss326 44.80 *******************************

Individual Test Descriptions

ss337 bool :- (s3 and not s2) - s3 ;
-- operations on 16 bit packed boolean array, -, AND, NOT

ss326 bool :- (bl and not b2) - b3 ;
-- operations on 16 bit unpacked boolean array, =, AND, NOT

Small Boolean Arrays (unpacked vs packed) =, AND

Test Execution Bar Similar
Name Time Chart Groups

ss338 3.61 ******

ss327 22.20 ********************************

Individual Test Descriptions

CMUJSEI-92-TR-32 9

ss338 bool :-(si and s2) - sl;
-- operations on 16 bit packed boolean array, -, AND

ss321 bool := bl and b2) = bl
-- operations on 16 bit unpacked boolean array, -, AND

Small Boolean Arrays (unpacked vs packed) /-, AND

Test Execution Bar Similar
Name Time Chart Groups

ss339 3.38 1~~

ss328 24.50 1***~*****~**~****

Individual Test Descriptions

ss339 IF (s2 AND s3) /- s3THEN die ;END IF ;
-- operations on 16 bit packed boolean array, /-, AND

ss328 IF (b2 AND b3) /- b3 THEN die ; END IF ;
-- operations on 16 bit unpacked boolean array, /-', AND

Small Boolean Arrays (unpacked vs packed) AND

Test Execution Bar Similar
Name Time Chart Groups

3s340 3.13 *~

ss329 24.30 *****************

Individual Test Descriptions

ss340 34 s-ia AND s2 ;
-- operations on 16 bit packed boolean array, AND

ss329 b4 :-bi AND b2 ;
--operations on 16 bit unpacked boolean array, AND

Small Boolean Arrays (unpacked vs packed) OR

Test Execution Bar Similar
Name Time Chart Groups

ss341 3.13 **

ss330 24.30 *****************

Individual Test Descriptions

ss341 s4 :-si OR s2 ;
-- operations on 16 bit packed boolean array, OR

ss330 Mb : bi OR b2 ;
-- operations on 16 bit unpacked boolean array, OR

10 CMU/SE[-92-TR-32

small Boolean Arrays (unpacked vs packed) OR

Test Execution Bar Similar
Name Time Chart Groups

ss342 52.70 **.*zf***********

ss331 54.50 I

Individual Test Descriptions

-- OR (aggregate with range clause)
bool :=yy > zz:

ss331 b4 :=bi OR setl C seti' range => bool);
-- operations on 16 bit unpacked boclean array, OR
-- uses an aggregate with range clause

ss342 s4 :=si OR set2' (set2'range -> bool);
-- operations on 16 bit packed boolean array. OR
-- uses an aggregate with range clause

Small Boolean Arrays (unpacked vs packed) XOR

Test Execution Bar Similar
Name Time Chart Groups

ss343 3.33 **

ss332 26.50 ***************~*

Individual Test Descriptions

ss343 s4 :-si XOR s2 ;
-- operations on 16 bit packed boolean array, XOR

ss332 b4 :-bi XOR b2 ;
-- operations on 16 bit unpacked boolean array, XOR

Small Boolean Arrays (unpacked vs packed) Fetch and Store

Test Execution Bar Similar
Name Time Chart Groups

ss333 1.69 *****

ss344 5.78 *****************

Individual Test Descriptions

ss344 si (ei) :- si (ej);
-- fetch from and store into indexed element (16 bit packed)

ss333 bl (ei) :-bi (ej) ;
-- fetch from and store into indexed element (16 bit unpacked)

Small Boolean Arrays (unpacked vs packed) slice Assignment

Test Execution Bar Similar

cMU/SEI-92-rR-32 1

Name Time Chart Groups

ss334 3.96 1***W**t~********t

Individual Test Descriptions

ss345 si (10- 14) :=s2 (11- 15);
-- operations on 16 bit packed boolean array, slice assignment

ss334 bi (10- 14) :-b2 (11- 15)
-- operations on 16 bit unpacked boolean array, slice assignment

Small Boolean Arrays (unpacked vs packed) - Conversion

Test Execution Bar Simi lar
Name Time Chart Groups

ss335 50.60
ss346 76.00 ***,W*******m****

Individual Test Descriptions

Test Execution Bar Similar
Name Time Chart Groups

ss335 b4 :- setl (si);
-- convert from unpacked to packed 16 bit boolean array

ss346 s4i :- set2 (bl);
-- conversion packed to unpacked 16 bit boolean array

small Boolean Arrays (unpacked vs packed) - .'etch From Array

Test Execution Bar Similar
Name Time Chart Groups

ss336 1.28
ss347 1.67 *****************

Individual Test Descriptions

ss347 bool :-s5 C ei)
-- fetch element from 16 bit packed boolean array

ss336 bool :-b5 (ei)
-- fetch element from 16 bit unpacked boolean array

Large Boolean Arrays (unpacked vs packed) AND

Test Execution Bar Similar
Name Time Chart Groups

ss351 58.10
ss348 202.40 ********~********

12 CMUISEI-92-TR--32

Individual Test Descriptions

ss348 bool :- (ibl AND ib2) = Ibl ;
-- operations on large unpacked Boolean array, =. AND

ss351 b - := (Isl AND 1s2) = Isl ;
-- operations on large packed Boolean array, =, AND

Large Boolean Arrays (unpacked vs packed) ANJ, NOT, OR, XOR

Test Execution Bar Similar
Name Time Chart Groups

ss352 406.40 1

ss349 789.40 * I

Individual Test Descriptions

ss352 ls4 :- (NOT (isl AND ls2) OR is3) XOR is5 ;
-- operations on large packed Boolean array, AND, OR, XOR

ss349 1b4 :- (NOT (lbl AND ib2) OR lb3) XOR lb5 ;
-- operations on large unpacked Boolean array, NOT, XOR, AND, OR

Large Boolean Arrays (unpacked vs packed) AND

Test Execution Bar Similar
Name Time Chart Groups

ss350 2.18 1 I
ss353 2.57 ************************1*****W** I

Individual Test Descriptions

-- - -.-- -..

ss350 lb4 (ei) :- isl (ej) ;
-- convert packed to unpacked large Boolean array

ss353 Is4 (ei) :- lbl (ej) ;
-- convert large unpacked Boolean array to packed

Observation 2: AES tests for array performance using a combined workload.

In summary, the test results indicate that the arrays allocated within the execution scope and directly
accessed via indexing (rather than via access variables) generally show the best run-time performance.
A packed array may be manipulated as quickly or more quickly than an unpacked array for all tested
cases (the exception is when access is via array slices for arrays allocated "on stack"). This effect is
especially pronounced for Boolean arrays.

The AES uses a consistent format for its tests of array operations. Instead of testing a single operation
(e.g., assignment of an integer to a one-dimensional array), a mix of many related operations is per-
formed (e.g., assignments to one-, two-, and three-dimensional arrays). These test sequences are ap-

CMU/SEI-92-TR-32 13

plied to arrays that are allocated differently along two dimensions: representation (packed vs. unpacked
arrays), and creation (three types of declaration). (The AES output refers to these declarations as "On-
Stack," "Library Record," and "Heap Record" [see below].) The timings provided as output from these
tests are useful for providing information on the runtime performance trade-offs between allocation
strategies; however, the measured times represent a mix of instructions that cannot be related to indi-
vidual array operations. The times are also usefully employed when the test is performed on different
releases of software and/or hardware and the results compared.

The AES uses three allocation methods for test arrays (the following examples are for unpacked arrays;
the packed forms use the same form with the addition of pragma PACK).

Common type declarations:

type ONEDIMU is array (1 .. 5) of CHARACTER;
type TWODIMU is array (0 .. 3) of ONE DIMU;
type THREEDIMU is array (BOOLEAN) of TWO_DIM U;

-- The access types required for this test

type REFONEDIMU is access ONEDIMU;

type REFTWODIMU is access TWODIM U;
type REFTHREEDIMU is access THREEDIMU;

* AES "On Stack" Allocation

declare

-- Variables of the required array types declared on the stack
ONE_U_1, ONEU_2 : ONEDIMU;
TWO_U_1, TWOU_2 : TWODIMU;

THREE_U_1 : THREEDIM U;

begin
-- timed test;

end;

"* AES "Library Array" Allocation

declare

-- Variables of the required array types are
-- declared in the following library.

use TI02AA; -- library unit containing all array
-- and pointer definitions and declarations

begin
-- timed test;

end;

"* AES "Heap Record" Allocation

declare

-- Variables of the required array types declared on the heap
ONEU_1, ONEU_2 REFONEDIMU;
TWOU_1, TWOU_2 REFTWO DIM U;
THREE U 1 REFTHREE DIM U;

14 CMUSEI-92-TR-32

begin
-- timed test;

end;

Declarations in procedures were not tested:

procedure TI02A is

ONE_U_l, ONE_U_2 : ONEDIM U;
TWOU 1, TWO U 2 : TWO DIM U;
THREEU_1 : THREE DIMU;

begin
-- timed test;

end;

The reason for this omission is not known.

AES Test Results:

Configuration 1, DIY_AES Version 2.0, Tests TI02A-F.

1.5. TI02A

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in
component indexing. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Array Component Indexing:

+----------------+----+ ---- +--- +--

I Array I On-stack I Library I Heap
I Type I Array I Array I Array I
+-- --.....---..---- -+

I Unpacked I 664us i 961us 1 977us I
I Packed I 664us I 890us I 665us I
----------------- +----+ ---- +------

1.6. TI02B

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
assignments. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Array Assignment:

+.....--.... ---.----+ ..- -------- +

I Array I On-stack I Library I Heap I

I Type I Array I Array I Array I
+..........+..----+. ---------
I Unpacked I 16Bus I 170us I 182us I
I Packed I 168us I 170us I 183us I
---------- - +- --- +---

1.7. TI02C

This test examines the efficiency of array object

CMU/SEI-92-TR-32 15

manipulation, in particular, the cpu time taken in array
comparisons. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Character Array Comparison:

+..---------+------.+--------- +

I Array I On-stack I Library I Heap I
I Type I Array I Array I Array I
-----------------+----+ ---- +-----+

I Unpacked I 410ns I 410ns ý 410ns I
I Packed I 410ns I 410ns i 410ns I

...----- +-...- ...--- +---------.-----.+

1.8. TI02D

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in
performing logical operations on boolean arrays. Timings
are taken for both packed and unpacked arrays, declared
on the stack, on the heap and in library packages.

Logical Operations on Boolean Arrays:

+...-------+- --- ----

I Array I On-stack I Library I Heap
I Type I Array I Array I Array I

---------------...------ ---- +

I Unpacked I 587us I 628us i 805us 1
1 Packed 1 196us 1 203us I 231us I

+------ + - ---- -- ---

1.9. TI02E

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
concatenation. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. An unconstrained one-dimensional
integer array is used.

Test failed. Wrong TESTID in TEST.TST

1.10. TI02F

"'his test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
slicing. Timings are taken for both packed and unpacked
arrays, declared on the stack, on the heap and in library
packages. An unconstrained one-dimensional integer array
is used.

Array Slicing:
+- - -------- ----------- +

I Array I On-stack I Library I Heap I
I Type I Array f Array I Array I
+-.-..-.----+------..------ ---------

I Unpacked 1 566us i 573us ! 1.48ms I
I Packed I 584us I 573us I 1.48ms ý
+..------+---- -- ----

16 CMU/SEI-92-TR-32

Observation 3: ACEC tests comparing operations on arrays with and without constraint checking.

These ACEC tests provide a comparison between instruction sequences with checks enabled and
checks disabled. However, due to errors in the command files provided for running the tests, the major-
ity of the comparisons are invalid (see below). Useful data was obtained from SSA report "3 References
To Same Array In Expression," SSA report "Arrays - Assignment To 1 Dimensional Array of Real" for
test ss55 compared with ss169 and SSA report "ID Array (Same Index) Both Sides of Assignment
Stmt."

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Reports of "Language Feature Overhead":

"Array of Biglnt," page 17

"Array of Character Strings," page 18

"3 References to Same Array in Expression," page 18

"Arrays - Assignment to 1 Dimensional Array of Real," page 19

"Arrays - 2 Dimensional Arrays of Real," page 19

"Arrays - Assignment to Array of Real," page 20

"1 D Array (Same Index) Both Sides of Assignment Stmt," page 20.

Note that several tests are invalid since checks were disabled for all of the tests performed. This was
due to an error in the control files provided with the test suite. These SSA reports are marked with the
phrase ca'lnvalld result, checks disabled.

Language Feature Overhead

Array Of bigInt Wlinvalld result, checks disabled

Test Execution Bar Similar
Name Time Chart Groups

ss53 1.28 *******************wa*****.. I
ss284 1.28 ******************.*****
ss54 1.42 ****************************..
ss285 1.42 ***************************
- - - .

CMU/SEI-92-TR-32 17

Individual Test Descript ions

ss53 ii :-il (ei);
-- R-ference to subscripted array of int, without checking.

ss54 ii :-il (ei + I):
-- Reference to subscripted array of nt., without checking.

ss284 lii: lil (bigint (ei))
-- fetch from array of bigint.

ss285 lii: lil (bigint. C ei 1));
-- fetch from array of bigint, fold term into address computation

Array of character strings twllvalld result, checks disabled

Test Execution Bar Similiar
Name Time Chart Groups

ss243 1.28 W****tt**W******f

3s53 1.28 I

Individual Test Descriptions

Compare reference to array of integers to an array of a subtype of string.

SUBTYPE c2 ISString (1 .2) ;
TYPE trans type Is ARRAY (int' (0) .. int (255)) OF c2
trans :trans-type;
TYPE rec array IS ARRAY Cint' (1) .. int (4)) OF byte
SUBTYPE c8 IS St~ring (1I.. 8)
ccc, hex :cS ;

ss53 ii :-il (ei)
-- Reference to subscripted array of int, without checking.

ss243 hex (1 .. 2) : trans (11);
-- access to array of 2 character strings and assign to a slice

3 References To Same Array In Expression

Test Execution Bar Similar
Name Time Chart Groups

ss193 8.52 **************

ssl74 10.60

Individual Test Descriptions

3s174 xx :-ie (ci + e) + el (ei + 1) + el C ci)
-- 3 references to same array in expression, subscripting

-- expression has constant terms with subscript range
-- checking enabled. Bounds checks can be merged.

ss193 xx :-el (ei + 2) + el (ei + 1) + el (i)

-- 3 references to same array in expression, subscripting
-- expression has constant terms with subscript range checking
-- suppressed. Subscripting expression has common subexpression.

18 CMUISEI-92-TR-32

Arrays - Assignment To 1 Dimensional Array Of Real

Test Execution Bar Similar

Name Time Chart Groups

ss55 0.78
1s69 0.78 **

ss645 1.28 **~

ss53 1.28 ~ **

ss309 1.28
ss54 1.42 1~***

ss646 3.95 ********.**

ss647 6.26 *t*i***t****t****

Individual Test Descriptions

ss53 ii :- ii (ei);
-- Reference to subscripted array of int, without checking.

ss54 ii -- il (ci + 1);
-- Reference to subscripted array of mnt, without checking.

ss55 ii :=ii C 1) ;
-- Reference array with a constant subscript, without checking.

ss169 ii :-il (1);
-- fetch from 1D array with range checking, using constant subscript

9ss73 ii :=il (ci + 1);
-- Reference to subscripted array of mnt, with checking.

ss309 hue :-stat (ci);
-- access array of an enumerated type

ss645 one :- el (ci);
-- fetch from 10 array, checking suppressed

ss646 one :-e2 (ei , ej) ;
-- fetch from 2D array, checking suppressed

ss647 one :=e3 (ci , ej , ek);
-- fetch from 3D array, checking suppressed

Arrays - 2 Dimensional Arrays Of Real IWInvaIld result, checks disabled

Test Execution Bar Similar
Name Time Chart Groups

ss646 3.95 *****************

ss759 3.96 *****************

ss?62 3.96 ****************.

Individual Test Descriptions

e2 :ARRAY Cint' (1). .int' (10) ,int' (1) .. int1 (10)) OF real

ei, ej, ek nt :=1;

ss646 one -- e2 (el, ej)

CMU/SEI.92-TR-32 19

-- fetch from 2D array : No constraint checking.
-- ss646 and ss759 SHOULD Lake the same time.

ss759 one :- e2 (ei, ej) ;
-- Fetch value from two dimensional floating point array.
-- No constraint checking.

ss762 one :- e2 (ei, ej) ;
-- Fetch value from two dimensional floating point array.
-- Constraint checking.

Arrays - Assignment to Array of Real WInvalld result, checks disabled

Test Execution Bar Similar
Name Time Chart Groups

ss761 1.29 *****

ss758 1.29 ******

ss759 3.96 ********************
ss762 3.96 **********w*******
ss760 6.27 *****************************
ss763 6.28 ********************************

Individual Test Descriptions

ss758 one :- el (ei) ; -- No constraint checking.
-- Fetch from one dimensional array.

ss759 one :- e2 (ei , eJ) ; -- No constraint checking.
-- Fetch from two dimensional floating point array.

ss760 one :- e3 i ei , ej , ek) ; -- No constraint checking.
-- Fetch from three dimensional floating point array.

ss761 one :- el (ei) ; -- Constraint checking.
-- Fetch from one dimensional array.

ss762 one :- e2 (ei , ej) ; -- Constraint checking.
-- Fetch from two dimensional floating point array.

ss763 one :- e3 (el , eJ , ek) ; -- Constraint checking.
-- Fetch from three dimensional floating point array.

1D Array (Same Index) Both Sides Of Assignment Stmt

Test Execution Bar Similar
Name Time Chart Groups

ss192 7.21 ***************************** I
ssl70 7.89 ********************************

Individual Test Descriptions

ssl70 el (el) :el (e) * one,
-- Fetch from and store into 1D array (same index) on both
-- left and right side of assignment statement with
-- subscript range checking enabled. Subscript
-- computation need only be verified once.

20 CMU/SEI-92-TR-32

ss192 el (ei) :-el (ei) * one;
-- Same subscripting expression of left and right side of
-- assignment statement. Checking suppressed.

Observation 4: ACEC tests of the effectiveness of packed representation.

The tests included here all specify a small array of unsigned integer values, where the base type is a

range of O..2n. The values of n tested are 3, 5, 7, and 16, but not all test results were available for the

target configuration.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Ancillary Data."

Identifiers of the form "a_#" indicate the base type for packing, where # is the minimum number of bits

required to hold the value. Identifiers of the form "a#(1)" indicate a cell of an array of the base type.

SNote that the percentage value In *packing achieves x% of maximum" for the SSA report Ancillary

Data is computed incorrectly and should be ignored.

Ancillary Data-

Ancillary Data

Ancillary Data - List

ss657 a 5'size = 8, a5(1)'size = 8, packing achievesl00% of maximum

ss662 a_7'size - 8, a7(l)'size - 8, packing achievesl00% of maximum
S................-- ---- -..........

ss672 a_l5'size -16, al5(l)'size -16, packing achieveslOOt of maximum

ss677 a_16'size -16, a16(1)'size -16, packing achieveslOO% of maximum

Observation 5: ACEC tests of array access methods.

These tests use simple assignments and various types of shifts to iterate through the array. While some
variation is checked, including arrays of real, integer, and Boolean quantities and checks on and off, the
coverage is not orthogonal. Also, note that the SSA report "Array Assignment" reports results from as-
signments to two types of arrays: el, which holds floating point numbers, and il, which holds integers.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Reports of "Coding Style Variations":

CMU/SEI-92-TR-32 21

"Array Assignment"

"Shift Packed Boolean Array

Coding Style Variations

Array Assignment

Test Execution Bar Similar
Name Time Chart Groups

ss81 7.56 *
ssl71 7.66 ****1****

ss388 7.80 ********
ss77 8.83 ***********

ss78 8.83 **********

ss79 8.83 **********

ssSo 9.93 *************

ss209 25.50 *********************t*********

Individual Test Descriptions

All of these represent different ways of assigning an array of ten
elements to one. ss8l, ssl7l, and ss209 refer to integers, the rest
to reals.

ss77 el :- (.- 10 => 1.0) ;
-- aggregate with range specification

ss78 el :c (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0. 1.0, 1.0
-- aggregate with elements positionally specified

ss79 el :- xel
-- copy array

ssSo FOR i IN 1..10 LOOP el (i) :- 1.0 ; END LOOP;
-- Array assignment using a FOR loop to set each element to 1.0.

ss81 FOR i IN 1..10 LOOP il (i) := i ; END LOOP
-- Array assignment using a FOR loop to set the 'ith" element to "i".

ssl71 FOR i IN 1..10 LOOP il (i) i- i ; END LOOP ;
-- subscript with FOR loop index (in range) compile time range

check possible

ss209 ii := 1 ;
WHILE ii <- 10
LOOP

il (i) : i ;

ii ii + 1 ;

END LOOP ;
-- WHILE loop comparable to the FOR loop in ss~l

ss388 el (1) :- 1.0 ; el (2) :- 1.0 ; ... el (10) :- 1.0

-- sequence of literal assignment statements to array components.

Shift Packed Boolean Array

Test Execution Bar Similar

22 CMU/SEI-92-TR-32

Name Time Chart Groups

ss524 3.38 *
ss525 83.00 * i

Individual Test Descriptions

Two alternative ways of performing the same operation, one using
slice aggregate assignments, the other using an element by element
loop.

TYPE ba16_type IS ARRAY C 1..16) OF Boolean
PRAGMA pack (bal6 type
ba : bal6 type ;

ss524 ba (1..15) :- ba (2..16) ; ba (16) :- False
-- Shift a packed Boolean array using slice assignments.
-- Could be implemented as integer divide.

ss525
FOR i IN 1..15 264.1
LOOP

ba (i) ba (i + 1) ;
END LOOP
ba (16) ;- False
-- Shift a packed Boolean array using a FOR loop and
-- element by element assignment.

References

0 none

CMU/SEI-92-TR-32 23

24 CMUISEI-92-TR-32

2.3 Check Suppression

Question: How does performance change when checks are turned off?

Summary: Suppressing runtime checks can increase execution speed. However, the increase is
dependent on the interaction of compiler optimization and the operations and data subject to runtime
checking. Removal of constraint checks also generally decreases the size of the executable code.

Discussion: Constraint checking is often cited as reducing program performance. Before suppressing
checks, it is useful to know the actual cost of constraint checking. The AES test used in this report times
code segments which use many individual checks. They may be considered representative of a worst
case use of checks. Similarly, the information on code size changes gives an indication of the amount
of space checking code requires.

There are several anomalous results. In one case this is an error in the AES test T007. The others rep-

resent unexpected behavior on the part of the Verdix Ada Development System.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES Test TO07, found that for representative blocks of code the suppression of all
checks and selected checks improves performance in most cases.

As can be seen from the AES output below, test execution time improved when INDEXCHECK, AC-
CESSCHECK, DISCRIMINANT_CHECK, LENGTHCHECK, and RANGECHECK were individu ,
or collectively suppressed. However, execution times did not improve when OVERFLOWCHECK and
STORAGECHECK were suppressed. The measured time unexpectedly increased when DIVI-
SION_CHECK was individually suppressed. Observation 2 examines these performance anomalies.

AES Test Results:

Configuration 1, DIYAES Version 2.0, Test T007 - (9 digits of precision).

0.7. T007

This test determines whether pragma SUPPRESS makes any
appreciable difference to the efficiency of Ada code.

In addition to pragma SUPPRESS, the following
implementation dependent pragma was used during the
execution of this test.

CMU/SEI-92-TR-32 25

pragma SUPPRESS(ALLCHECKS);

The following table shows the CPU times to execute blocks

of code when the specified checks are left in and when

they are suppressed.

It also shows the time for each block of code when the
statement pragma SUPPRESS(ALL CHECKS); is included.
In each case the block of code timed makes heavy use of
statements that require the specified type of checking.

------------------- +--

III I I
I Type of check I With the With check I All checks

I check in I suppressed I suppressed

-------------------- +--------------+-----------------+-----------------+

II I I I
I INDEX CHECK 1.97s I 1.03s 1.63s
I ACCESSCHECK 1.08S s 961ms 1 961ms
I DISCRIMINANTCHECK 1.69s I 1.27s [1.27s I
I LENGTH CHECK 1.82s 1.71s I 1.29s I

***I RANGE CHECK 1.64s I 145ms I 148ms I
DIVISION CHECK 1.44s I 1.57s 1.36s I

I OVERFLOW CHECK I 1.55s I 1.55s I 1.55s
STORAGECHECK I 1.49s I 1.49s I 1.49s

II I II
-------------------- +--------------+-----------------+-----------------+

"This test is erroneous. See Observation 2.

Observation 2: The executable code from AES test T007 was examined with the VADS debugger for
size and performance effects. Suppressing checks causes code size to change, ranging from a
decrease of 56% to an increase of 14%. Both individual check suppression and full suppression were
tested. Further examination of the code explains some of the performance anomalies noted in
Observation 1.

The AES test harness performs two separate runs of test TO07. The first examines when checks are
individually suppressed, the second run suppresses all checks and repeats the individual timings. The
code segment timed for each class of checks is intended to exercise the individual check. The INDEX_-
CHECK section performs assignments to individual array elements, for example.

The test avoids actually raising any exception.

As defined in the Ada Language Reference Manual, pragma SUPPRESS disables checking only within
the innermost enclosing declarative region. Therefore other checks should be active during individual
tests, if applicable to the tested operation. This rule holds true in the examined code.

AES Test Results:

Configuration 1, DIYVAES Version 2.0, Test T107.

26 CMU/SEI-92-TR-32

Table 1: Generated Code Sizes AES Test T007

Checki•g Individual Check AD Checks

Check On Off Off

#Bytes #Bytes %0n #Bytes % Onb

INDEXCHECK 1760 770 43.80/6 1120 63.6%

ACCESSCHECK 170 122 71.8% 122 71.8%

DISCRIMINANTCHECK 210 120 57.1% 120 57.1%

LENGTHCHECK 4032 3648 90.5%/6 2440 60.5%

RANGECHECK 352 0 0.00/C 0 0.0*/.c

DIVISIONCHECK 1036 1180 113.9% 816 78.8%

OVERFLOWCHECK 456 456 100.09/6 430 94.3%

STORAGECHECKd 112 112 100.0% 100 89.3%

a % On = (# bytes checking on / # bytes individual check off) * 100
b % On = (# bytes checking on / # bytes all checks off) * 100
c Invalid test result
d Size does not indude system routines called to perform runtime allocations.

The code sizes are the number of bytes for the test code only, excluding looping and anti-optimization
code. It should be noted that the looping and anti-optimization code is located in a region where checks
are suppressed and can potentially benefit from suppressing checks, but should not be affected by test-
ing the suppression most individual checks (with the possible exception of INDEXCHECK). For allo-
cation of new objects (used to exercise STORAGECHECK), a call to a run time allocation routine was
made. The size of this routine was not known and is not included in the recorded size.

Explanations for a number of individual anomalies were sought:

* Why does suppressing INDEXCHECK individually yield a better execution time
than suppressing all checks?
Less code is generated by the compiler when the check is individually suppressed
than when all checks are suppressed.

* Why are execution times greatly reduced when RANGECHECK is suppressed?

CMU/SEI-92-TR-32 27

The test was optimized to an empty loop when checking was suppressed, invalidat-
ing the test. The test performs assignment to locally declared variables, which are
not referenced after assignment. With checking on, an exception could occur, so the
loop could not be removed. Without range checking, and with the assignment value
held constant, the compiler eliminated the assignment.

Why does execution time increase when DIVISIONCHECK is individually
suppressed?

The code size expanded, resulting in a larger test. The reason for increased code
size is not known.

* Why does the execution time remain unchanged when OVERFLOWCHECK is
suppressed (both individually and all checks)?

The size of code generated is the same when the individual check is suppressed and
is only 5.3% less when all checks are suppressed. The 68030 instruction set includes
a single instruction which can test the overflow condition, resulting in the small ex-
pansion factor. The AES test was not sensitive enough to detect the small difference
in code size.

Why does the execution time remain unchanged when STORAGECHECK is
suppressed (both individually and when all checks are suppressed)?

This test uses the new allocator to test storage check. For VADS, this involves a call
to a run time routine for heap allocation. The code for this routine was not available
for inspection. However the expansion of the visible code showed no increase in size
when the STORAGECHECK was suppressed and only a 10.7% reduction in size
for suppressing all checks. Assuming a relatively constant value for the execution
time of the allocation routine, the AES does not detect the small difference in code
size.

Observation 3: Static instruction timing was examined for selected code segments of AES test T007
using configuration #1 (DIYAES Version 2.0). The calculation was developed by examining test code
with the VADS debugger, then deriving the static timing according to the method described in Chapter
11 of the MC68030 Enhanced 32-Bit Microprocessor User's Manual, Second Edition. Chapter 11
provides a set of rules for timing which allows the user to account for the pipelined execution of the
microprocessor by combining times of adjacent instructions which are eligible for overlapping execution.
Additional woric must be performed to account for addressing modes used and instructions with data
dependent execution time.

Manual calculation of times was unsatisfactory for a number of reasons:

1. The calculation was time consuming and could not be verified. (It was not possible
to analyze any of the individual test sequences completely.)

2. The method provided uses time values that do not account for the alignment of
instructions on word boundaries in memory.

3. Assumptions must be made about the effects of the instruction and data caches,
and are not empirically verifiable.

Automated support for time computation may make static timing analysis practical.

28 CMU/SEI-92-TR-32

Simple observation of code expansion factors, derived through the VADS debugger, proved to be suf-

ficient for examining timing anomalies.

References

[ANSI] ANSI; The American National Standard for the Ada Programming Language;
American National Standards Institute Inc.; 1430 Broadway, New York 10018;
1983.

[Motorola] Motorola; MC68030 Enhanced 32-Bit Microprocessor User's Manual, Second
Edition; Prentice Hall, Englewood Cliffs, NJ 07632; 1989.

CMU/SEI-92-TR-32 29

30 CMU/SEI-92-TR-32

2.4 Data Location

Question: What is the performance effect of declaring data locally or outside the executing scope?

Summary: Simple data objects are accessed most efficiently when declared in a local block.
Operations performed on variables declared in library packages are slightly less efficient. Local
declarations, using the new operator, are the least efficiently accessed, and are subject to possible
storage exhaustion in long running applications.

Discussion: In Ada, programs may declare variables and constants in several locations within the pro-
gram unit:

I in a package specification or in the declarative part of a package body

• In the declarativb part of a subprogram or task body

* In the declarative part of a block

* Implicitly in loop statements

Although the syntax of declarations is the same for each case (with the exception of implicit declaration
in loop statements), compilers may use different strategies for data declarations depending upon their
location. For instance, declarations in library units may be treated differently than those local to a block.

Performance might also vary according to the type of the object declared. Ada allows for the declaration
of simple variables, arrays and records. Objects may be referenced indirectly via pointers, and the user
can specify the representation of variables.

In order to reduce this question to a tractable size, emphasis was placed on examining a limited number
of data types (simple variables, records, and arrays) declared in a small number of locations (within a
local block, at the start of a procedure, and in a library unit). This follows the model provided by the Ada
Evaluation System.

The AES tests T!O1A-D and TI02A-F examine the performance of records and arrays allocated in dif-
ferent locations (see Observation 1 on page 34). Each test compares the three types of storage and
tests two representations of the object (e.g., packed vs. unpacked for arrays). This makes a total of two
triplets of matched observations for each test, with six sub-tests for each test.

Figure 2-1 on page 32 summarizes the results from AES tests TI01 and T102. Each type of storage is
ranked within the test (from fastest to slowest) and a summary bar chart presents the counts for each
storage type. Observation 1 on page 34 contains the data used to prepare the chart and also presents
the Ada declarations used by the AES for "stack" (declaration in a block); "library" (use statement within
a block) and "heap" (new allocator within a block).

CMUiSFI-92-TR-32 31

Allocation strategies ranked by execution speed (AES Tests TIO1 and T102)

, 10

0

S5
E

Z

Fastest Middle Slowest Ties Present Failed

Allocation Strategy: Total number of observations is 20,

.J Stack two per AES subtest (e.g., TIO0A

Libr provides 2 triplets, making two
Lb observations). A tied score for any

pair in the triplet moves all three to
m Heap the tied category.

Figure 2-1: Summary Graph of AES Tests TIO0 and T102

Figure 2 and Figure 2-3 on page 33 show the individual test times for AES tests TI01 and T102 summa-

rized in Figure 2-1. For comparison purposes, it should be noted that "heap" allocations were created

by use of access types, while "stack" and "library" allocations were created by using regular declara-

tions. Any conclusion about heap allocation using the AES data is necessarily also an observation com-

paring standard type records and arrays with variables addressed by access (pointer) types.

32 CMU/SEI-92-TR-32

0.00

I I iac Ii

. oo a.

-60.0016

0.0014'

6-,O00

-0001

Figure 2-2: Graph of AES Test TI01 Results

0 04002

0

I-:

C - t Lib ra ryIC 'A w cp

In a

. _C 0. " o uM 0 .ulN..Stc

0.0010. 66

0- 04012. U ~

-9, g

6- N C 0 a u

0- N

a - . N C 0

0 6.

6.C a

Figure 2-3: Graph of AES Test T102 Results

The AES tests TM05 and TM07 (Observation 2 on page 38) check for potentially undesirable heap stor-
age characteristics. The tests indicate that heap storage creep (storage not returned to the free list after

CMU/SEI-92-TR-32 33

deallocation) and fragmentation (division of available free storage into unusable small fragments) can
occur.

The ACEC SSA Report entry titled "Reference Variables in Different Packages' (Observation 3 on page
39) compares simple variables and small arrays declared locally and in other packages. It is difficult to
determine how to group comparable tests. In the single clearly comparable case, tests ss469 and ss470
show no difference in performance between simple variables declared locally and in an outsic~e pack-
age.

The ACEC SSA Report entry titled 'Reference 0th .. 1024 Real Variable in Package" (Observation 4 on
page 40) indicates that the order of declarations in a package (the AES library declaration) has no effect
on performance.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES tests of performance for several types of variable declarations.

The AES tests three locations for declaring variables:

0 Stack -- The AES uses a declaration of the form:

type ARRAYTYPE is ...

declare
ANARRAY: ARRAYTYPE;

begin
-- Test of performance using ANARRAY

end;

0 Library -- The AES uses a declaration of the form:

package LIBRARYARRAY is
type ARRAY TYPE is ... ;
LIB ARRAY: ARRAY TYPE;

end LIBRARYARRAY;

with LIBRARYARRAY;
declare

use LIBRARYARRAY;
begin

-- Test of performance using LIBARRAY
end;

34 CMU/SEI-92-TR-32

* Heap -- The AES uses a declaration of the form:

type ARRAYTYPE is ... ;
type ARRAY-POINTER is access ARRAY-TYPE;

declare
REFARRAY: ARRAYPOINTER;

begin
REFARRAY :- new ARRAYTYPE;
-- Test of performance using REFARRAY

end;

Note that "heap" allocation uses access types and the "stack" and "library" allocation use direct decla-
ration. Thus comparison of heap with stack and library allocation is also a comparison of access types
and "regular" variables.

AES Test Resulls:

Configuration 1, DIY_AES Version 2.0, Group I, Tests TI01-2.

I. Group I - runtime Efficiency Tests

1.1. TI01A

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in
component selection. Both simple and variant records are
used which are declared on the stack, on the heap and in
library packages. The records contain scalar components.

Record Component Selection:

+------------+---- ---------------------------
I Record I On-stack t Library I Heap I
I Type I Record I Record I Record I
+-------------+--- ---------------------------
I Simple I 32.5us I 40.2us I 99.lus I
I Variant I 51.5us I 52.6us I 74.8us I
+-- +--------------------------------------+

1.2. TI01B

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in
component selection. Both simple and variant records are
used which are declared on the stack, on the heap and in
library packages. The records contain record components.

Record Component Selection:

+-- +--------------+------------------------
I Record I On-stack I Library I Heap
I Type I Record I Record I Record I
+-- +--------------+------------------------+

I Simple I 32.5us I 40.2us I 100us I
I Variant 1 155us 1 155us t 290us I
-- -------------- +--------------+------------

CMU/SEI-92-TR-32 35

1.3. TIOIC

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in record
assignment. Both simple and variant records are used
which are declared on the stack, on the heap and in
library packages. The records contain both scalar and
record components, the variant records containing two or
three discriminants.

Record Assignment:

+---------.----+-.---- -- ----- +

I Record I On-stack I Library I Heap I
I Type I Record I Record I Record I
+..-------.+.......+-.....------- -+.-----.+

I Simple I 279us I 286us I 293us I
I Variant I 1.59ms I 1.61ms I 1.96ms I
+---------------+----+ ---- +------

1.4. TI01D

This test examines the efficiency of record object
manipulation, in particular, the cpu time taken in record
comparison. Both simple and variant records are used
which are declared on the stack, on the heap and in
library packages. The records contain both scalar and
record components, the variant records containing two or
three discriminants.

Record Comparison:

+..-------.-.-+.-.....-....-----+-- --------

SRecord I On-stack I Library I Heap I
I Type I Record I Record I Record I

...---- +-- ...------- +-------.-- ----+--

I Simple I 410ns I 410ns I 410ns I
I Variant I 93.3us I 77.5us ; 250us I
+---------------+----+ ---- +--- +--

1.5. TI02A

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in
component indexing. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Array Component Indexing:

+----------------.4----+ ---- +--- +--

I Array I On-stack I Library I Heap I
I Type I Array I Array I Array I
+----------------+----+ ---- +------

I Unpacked I 664us 1 961us 1 977us I
I Packed I 664us I 890us 1 665us I
+----------------+----+ ---- +----+-

36 CMU/SEI-92-TR-32

1.6. TI02B

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
assignments. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Array Assignment:

+---- ---------------------------.------------- +

I Array I On-stack I Library I Heap I
I Type I Array I Array I Array I
----------------- ---------------------------

1 Unpacked 1 168us I 170us I 182us I
I Packed u 168Us I 170us I 183us I
--------- +--------------+--------------+-------------+

1.7. TI02C

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
comparisons. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. One-, two- and three-dimensional
character arrays are used.

Character Array Comparison:

+------ -+--------------+--------------+------------+
I Array j On-stack I Library I Heap
I Type I Array I Array I Array I

+---------+--------------+--------------+------------+

I Unpacked I 410ns I 410ns 1 410ns f
I Packed I 410ns i 410ns I 410ns I
+--- ---------------------------- +-------------+

1.8. TI02D

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in
performing logical operations on boolean arrays. Timings
are taken for both packed and unpacked arrays, declared
on the stack, on the heap and in library packages.

Logical Operations on Boolean Arrays:

+--- -------------- +--------------+-------------+
I Array I On-stack I Library i Heap I
I Type I Array I Array I Array I
---- --

Unpacked I 58 7 us I 628us i 805us I
I Packed I 196us I 203us I 231us I
--------- +--------------+--------------+-------------+

CMU/SEI-92-TR-32 37

1.9. TI02E

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
concatenation. Timings are taken for both packed and
unpacked arrays, declared on the stack, on the heap and
in library packages. An unconstrained one-dimensional
integer array is used.

Test failed. Wrong TESTID in TEST.TST

I.10. TI02F

This test examines the efficiency of array object
manipulation, in particular, the cpu time taken in array
slicing. Timings are taken for both packed and unpacked
arrays, declared on the stack, on the heap and in library
packages. An unconstrained one-dimensional integer array
is used.

Array Slicing:

+-----------------+

I Array I On-stack I Library I Heap I
I Type I Array I Array I Array I
----ak-------------7----3----------

I Unpacked I 566us I 573us I 1.48ms I
IPacked I 584us I 573us Il.48msI

+----------------+----+ ---- +-----+

Observation 2: AES Storage management tests for heap storage creep and fragmentation.

AES Test Results:

Configuration 1, DIYAES Version 2.0, Group M, Tests TM06-TMO7.

M. Group M - Storage Management Tests

M.7. TMOS

This test examines the creeping of heap storage space
when returning unconstrained types from subprograms.

"Creeping" loss of storage can occur when subprograms
return large unconstrained arrays or records. This is
because it may be difficult for the runtime System to
monitor and later reclaim this space.

Returning unconstrained records does cause "creeping"
loss of heap storage.

Returning unconstrained arrays does cause "creeping" loss
of heap storage.

M.9. TM07

This test checks for fragmentation of heap storage.

The test checks whether the space recovery mechanism

38 CMU/SEI-92-TR-32

merges adjacent areas of free memory, splits previously
allocated large areas into small ones, or otherwise
fragments the heap storage area.

The whole of heap storage was allocated using large
records, deallocated, allocated sing small records,
deallocated, then reallocated with the same large
records. The total amount of space allocated in each
case, and the maximum allocatable record size, was
compared. Fragmentation of heap storage does occur.

Observation 3: ACEC test of performance variation due to location of the data declaration.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Reference Variables Defined in Different Packages."

Language Feature Overhead

Reference Variables Defined In Different Packages

Test Execution Bar Similar
Name Time Chart Groups

ss469 0.78 *
ss470 0.78 *

ss476 1.56 1
ss471 1.68 *

sS474 2.52 *1

sS475 2.70 **

ss477 10.90 *********

ss472 13.30 ***********

ss473 42.30 **********************************

Individual Test Descriptions

-- explore overheads necessary to maintain addressability

ss469 p046 7 t0l.a := p0467t02.d ;
-- reference variable defined in two packages

ss470 p0467t0l.a := p0467t01.b ;
-- reference variable defined in 1 external packages

ss471 p0467t01.c (localone) := local_one + p0467t02.d + global.ten
-- reference variable defined in local scope plus 1 -- external package

ss472 FOR i IN p0467tOI.c'RANGE LOOP
p0467t0l.c(i) - i + p0467t02.d + global.ten

END LOOP ;
-- reference variable defined in three different packages

ss473 FOR i IN p0467t01.c'RANGE Loop
p0467t0l.c(i) := i + p0467t02.d + global.ten
procO

END LOOP
-- reference variable defined in four different packages

CMU/SEI-92-TR-32 39

ss474 ii :- p0467tOl.a + p0467tO2.e
p0467tOl.c(1) :- p0467tOl.b + p0467tO2.f + ei

-- reference variable defined in three different packages
-- Multiple references to packages so mi;'it shate addressing setup.

ss475 p0467t03.g (global.ei) :-
I - p0467tOl.a + p0467t02.e + p0467t03.i - localone

-- reference variable defined in two different packages
-- Reference one package twice.

ss476 p0467t03.h (ei) := ten ;
-- reference variable defined in two different packages

ss477 FuR i IN int' (l)..int' (10) LOOP
p0467t03.g (i) :" p0467t03.h (i)

END LOOP ;
-- reference variable defined in one external package

Observation 4: ACEC test for performance variation based on order of declaration.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Reference 0th..1024th Real Variable in Package."

Language Feature Overhead

Reference 0th .. 1024th Real Variable In Package
--................. --------------...-- 4----.--

Test Execution Bar Similar
Name Time Chart Groups

ss785 1.55 ***************************
ss779 1.56 **********************************
ss780 1.56 **********************************
ss781 1.56 **********************************
ss782 1.56 **********************************
ss783 1.56 **********************************
sS784 1.56 **********************************

S3786 1.56 ********************************
ss787 1.56 ******************************** *
ss788 1.56 ********************************* I

Individual Test Descriptions

-- Early variables may be able to use short displacements.

ss779 xx :- rO ; rO := yy ;
-- Reference the 0th real variable declared in a package.

ss780 xx :- r2 ; r2 := yy ;
-- Reference the 2ed real variable declared in a package.

ss781 xx := r8 ; r8 := yy ;
-- Reference the 8th real variable declared in a package.

40 CMU/SEI-92-TR-32

ss782 xx :=- r16 ; r16 :- yy ;
-- Reference the 16th real variable declared in a package.

ss783 xx :- r32 ; r32 :- yy ;
-- Reference the 32th real variable declared in a package.

ss784 xx := r64 ; r64 :- yy ;
-- Reference the 64th real variable declared in a package.

ss785 xx :- r128 ; r128 :- yy ;
-- Reference the 128th real variable declared in a package.

ss786 xx := r256 ; r256 :- yy
-- Reference the 256th real variable declared in a package.

ss787 xx := r512 ; r512 : yy ;
-- Reference the 512th real variable declared in a package.

ss788 xx :- r1024 ; r1024 :- yy ;
-- Reference the 1024th real variable declared in a package.

References

9 none

CMU/SEI-92-TR-32 41

42 CMUISEI-92-TR-32

2.5 Enumeration Types

Question: How does the performance of operations on objects of an enumeration type compare with
the performance of an equivalent representation using strings or numeric values?

Summary: When integer values are used as an alternative to literals of an enumeration type, there is
no performance difference. For a simple assignment of a literal value, the integer assignment is slower
by about 16%. (In the benchmark suites considered in this document, there are no tests that use
character or string values as an alternative.) When an enumeration representation clause is used to
specify the internal codes of the literals of an enumeration type, the pcrformance of the VAL, POS, and
SUCC attributes degrades by almost an order of magnitude.

Discussion: Enumeration types provide users with a versatile way of expanding the set of types that
cnaracterize their applications. They allow users to define new discrete data types that go beyond Ada's
basic predefined discrete types. An issue that arises naturally when new data types are used is whether
or not the performance of operations on these types is better or worse than the performance of an equiv-
alent representation using the basic discrete types.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MG68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: ACEC tests of assignment to an enumerated type.

In this observation, and in all that follow, the results presented are for ACEC tests; there are no equiv-
alent tests in the AES or PIWG suites.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Range Constraint Check."

Optimizat ions

Range Constraint Check

Test Execution Bar Similar
Name Time Chart Groups

ss128 2.51 ********************************
ss255 2.51 * 1
ss129 2.58 ****************.************ I

CMUISEI-92-TR-32 43

Individual Test Descriptions

TYPE color IS (white, red, yellow, green, blue, brown, black

hue : color :- yellow ;

ss128 Ir hue < black THEN hue :- color'succ (hue C END IF

IF hue > white THEN hue := color'pred C hue C END IF

-- uses 'SUCC and 'PRED on enumerated type, no checking

ss129 IF ei < 6 THEN ei ei + 1 END IF

IF ei > 0 THEN ei ei - 1 END IF
-- Same computations as in ss128 on integers

ss255 IF hue < black THEN hue color'succ (hue) END IF

IF hue > white THEN hue color'pred { hue) END IF

-- uses 'SUCC and 'PRED on enumerated type, enabling range checking

Observation 2: Assignments to array elements of enumeration types. The tests of interest are ss53

and ss309.

ACEC Test Resufts

Configuration 1, ACEC Release 2.0, SSA Report "Arrays - Assignment to I Dimensional Array of Real."

Language Feature Overhead

Arrays - Assignment To 1 Dimensional Array Of Real

Test Execution Bar Similar
Name Time Chart Groups

ss55 0.78 ****

ss169 0.78 ****

ss645 1.28 ******

ss53 1.28 ******

ss309 1.28 *******

ss54 1.42 ********

ss646 3.95 *********************

ss647 6.26 **********************************

Individual Test Descriptions

ss53 ii = il (ei) ;
-- Reference to subscripted array of int, without checking.

ss54 11 :- il (ei + 1) ;
-- Reference to subscripted array of int, without checking.

ss55 ii := il (1) ;
-- Reference array with a constant subscript, without checking.

ssl69 ii := il (1) ;
-- fetch from ID array with range checking, using constant subscript

ss173 ii ;= il (ei + I) ;
-- Reference to subscripted array of int, with checking.

44 CMU/SEI-92-TR-32

ss309 hue :-stat C ei)
-- access array of an enumerated type

ss645 one := el ei);
-- fetch from ID array, checking suppressed

ss646 one :=e2 (ei , ej)
-- fetch from 20 array, checking suppressed

ss647 one :-e3 (i ,ej , ek);
-- fetch from 3D array, checking suppressed

Observation 3: Assignment of a literal value to an enumeration type.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Assign Enumeration Literal."

Language Feature Overhead

Assign Enumeration Literal

Test Execution Bar Similar
Name Time Chart Groups
--

ss31O 0.66 **w***********

s*7 0.71
--

Individual Test Descriptions
--

--

3s7 kk :- I ;
-- Integer literal assignment, literal "1" to library scope variable.
--

ss31O hue :- yellow~ ;
-- assign enumeration literal to variable of type

Observation 4: The results below show the effects of forcing a particular implementation of the
enumeration type by using an enumeration representation clause.

ACEC Test Resutts:

Configuration 1. ACEC Release 2.0, SSA Report "Attributes on Enumeration Types."

Language Feature Overhead

--
Attributes On Enumeration Types
--
Test Execution Bar Similar

CMU/SEI-92-TR-32 45

Name Time Chart Groups

ss252 3.51 "**
ss251 5.53 **,*

ss254 33.20 ,****** -
ss253 34.60 ***** **** *t*r****

Individual Test Descriptions

ss253 and ss254 use a representation clause, ss25 and ss252 do not.

TYPE mxI IS (add, sub, mul, ida, sta, stz ; -- from LRM 13.3
a mxl ;
d int :- mxl'pos (Ida) - mxl'pos (mul ;

ss251 a :- mxl'val (mxl'pos (mxl'succ (a)) * ei - d
-- use VAL, POS, SUCC attributes on enumeration type without
-- representation clauses. This statement enables range checking.

ss252 a -- mxl'val (mxl'pos (mxl'succ (a)) * ei - d C
-- use VAL, POS, SUCC attributes on enumeration type without
-- representation clauses in a block with suppresr RANGE CHECK.

TYPE mx2 IS (add, sub, mul, Ida, sta, stz) - from LRM 13.3
FOR mx2 USE (1, 2, 3, 8, 24, 33
a :rx2 ;
d int := mx2'pos (ida) - mx2'pos (mul

ss253 a := mx2'val (mx2'ros (mx2'succ (a)) * el - d ;
-- use VAL, POS, SUCC attributes on enumeration type with
-- representation clause and enable range checking

ss254 a :- mx2'val (mx2'pos (mx2'succ (a)) * el - d
-- use VAL, POS, SUCC attributes on enumeration type with
-- representation clauses, suppressing range checking

References

* none

46 CMU/SEI-92-TR-32

2.6 Exceptions

Question: What are the performance consequences of providing exception handling capabilities?

Summary: The presence of an exception handler that is not invoked does not add to the execution
time of a program. Raising and handling an exception locally takes approximately 68 to 71
microseconds. Propagating an exception through two to four levels of nesting takes from 124
microseconds to 292 microseconds, i.e., an increase in execution time ranging from 77 percent to 317
percent.

Discussion: Section 14.5.4 of the Rationale for the Design of the Ada Programming Language states
that, "One important design consideration for the exception handling facility is that exceptions should
add to execution time only if they are raised." The benchmark results presented in the Observation sec-
tions that follow support this assertion for the configuration tested. Note that, although the tests facilitate
comparisons between the various exception-handling schemes, they do not provide any comparison
between exception-handling and alternatives to exception-handling such as the use of status flags or
return variables.

There are some inconsistencies in the results presented here. The ACEC and PIWG tests to raise and
handle an exception locally yield the same result (about 70 microseconds), but the corresponding AES
test yields a result more than twice as large (170 microseconds). The ACEC result for exception han-
dling during rendezvous (306 microseconds) is about 38% larger than the PIWG result (221 microsec-
onds).

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: ACEC and PIWG tests that raise and handle locally a user-defined exception.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "User-Defined Exceptions" and "Exceptions--Condi-
tional Raise."

In this group of results, subtracting the results for tests ss311 and ss312 yields 71 microseconds, ap-
proximately, for the time required to raise the exception and enter the handler. A similar calculation for
ss312 and ss313 shows that the presence of a handler that is not entered adds only 0.26 microseconds
of overhead.

..--

CMU/SEI-92-TR-32 47

Runtime System Behavior

User-defined Exception

Test Execution Bar Similar
Name Time Chart Groups

ss313 0.52 1
ss312 0.78
ss3ll 71.30 *********************W********

Individual Test Descriptions

Demonstrate overhead of raising user-defined exceptions.

ss31l DECLARE
except : EXCEPTION

BEGIN
IF 11 > 0
THEN

RAISE except
END IF ; -- True, raised

EXCEPTION
WHEN except => procO

END ;
-- explicit raise of user-defined exception, and process it
-- -------- ----.

ss312 DECLARE
except : EXCEPTION

BEGIN
IF 11 < 0
THEN

RAISE except

END IF ; -- False, not raised
EXCEPTION

WHEN eAcept -> procO
END ;

-- define user-defined exception, do not raise it

ss313 DECLARE
BEGIN

IF 11 < 0
THEN

RAISE Numeric error
END IF -- False, not raised

END ;
-- does not define an exception or raise one

This second group of ACEC tests also shows that raising an exception and entering the handler takes
approximately 71 microseconds.

Runtlme System Behavior

Exception - Conditional Raise

Test Execution Bar Similar

48 CMU/SEI-92-TR-32

Name Time Chart Groups

ss527 5.73 *** I

Ss528 76.60 **************************f**** J
--- --

Individual Test Descriptions

ss527 DECLARE
ex : EXCEPTION

BEGIN
procO ;
IF mm = 11 -- never taken
THEN

RAISE ex
END IF ;
proco;

EXCEPTION
WHEN ex => procO;

END ;
-- conditional raise of user defined exception and go through handler.
-- Not taken. Compare with ss528, where exception is raised.

ss528 DECLARE
ex : EXCEPTION

BEGIN
procO ;
IF mm 1= 11 -- always taken
THEN

RAISE ex
END IF ;
procO;

EXCEPTION
WHEN ex -> procO;

END ;
-- conditional raise user defined exception and go through
-- handler. Taken. Contrast with ss527 where it is not.
-- Explicit RAISE could be implemented by simple branch.

PIWG Test Resu:s:

Configuration 1, PIWG 12/12/87 Release, Test E000001.

Test Name: E000001 Class Name: Exception
CPU Time: 68.4 microseconds
Wall Time: 68.5 micruseconds. Iteration Count: 256
Test Description:

Time to raise and handle an exception
Exception defined locally and handled locally

Observation 2: ACEC and PIWG tests that raise an exception in a called procedure and handle it in
the calling unit.

ACEC Test Resuts;

Configuration 1, ACEC Release 2.0, SSA Report "Exceptions - Block With Handler."

Subtracting the ss384 result from the ss381 results yields a value of, approximately. 117 microseconds.

CMU/SEI-92-TR-32 49

Runtime System Behavior

Exception - Block With Handler

Test Execution Bar Similar
Name Time Chart Groups

ss384 6.46 **

ss381 123.90 **********************t******* I

Individual Test Descriptions

ss381 DECLARE
BEGIN

xx one ;
f;

EXCEPTION
WHEN excp -> NULL
WHEN OTHERS -> die

END ;
-- Block with exception handler which calls on a procedure
-- which raises the exception (the procedure it calls
-- on does not h•¢e a handler but simply raises the exception.)

ss384 DECLARE
BEGIN

xx := one

EXCEPTION
WHEN excp -> NULL

WHEN OTHERS -> die

END;
-- call on procedure which doesn't propagate exception

PIWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Test E000002.

The 7% increase In this result over the equivalent ACEC result just listed is not significant. According to
the comments in this test, the difference between the PIWG result shown here and the PlWG E000001
result shown in the previous observation is equal to the pure propagation overhead. Performing the sub-
traction yields a value of, approximately, 56 microseconds. This is consistent with the result of a similar
AES test shown in Observation 4.

Test Name: E000002 Class Name: Exception
CPU Time: 124.7 microseconds
Wall Time: 124.7 microseconds. Iteration Count: 128
Test Description:
Exception raise and handle timing measurement
when exception is in a procedure in a package

50 CMU/SEI-92-TR-32

Observation 3: ACEC and PIWG tests of exception propagation.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "~Exception Processing with/without Handlers."

The results below show the overhead of propagating an exception through various numbers of levels
for eventual handling. This set of tests confirms the increasing performance penalty for propagating an
exception through increasingly nested units.

As before the results are obtainea by subtraction of the results from pairs of tests. The result for ss38l
minus ss384 has already been covered in Observation 2. Subtracting the ss383 result from that of
ss380 yields a time of approximately 161 microseconds. A similar calculation for ss382 and ss379 yields
227 microseconds, approximately. These latter two tests are not directly comparable with the PIWG test
results shown in this observation because of the different numbers of levels through which the excep-
tions are propagated.

Runt ime System Behavior

Exceptions Processing with/witholut Handlers

Test Execution Bar similar
Name Time Chart Groups

ss384 6.46
s5383 13.60 *

ss382 14.40
ss381 123.90 ********

s s380 174.40
s5379 241.10

Individual Test Descriptions

PROCEDURE hi IS
BEGIN

gi
EXCEPT ION

WHEN excp ->NULL

WHEN OTHERS -die
END hi ;

ss379 hl ; -- does propagate EXCEPTION
-- make two PROCEDURE calls. The lowest level has an EXCEPTION handler
-- which can (re) raise an EXCEPTION and propagate it to the next
-- higher level. this problem raises the EXCEPTION.

ss382 hl ; -- EXCEPTION not propagated
-- make two PROCEDURE calls. The lowest level has an EXCEPTION handler
-- which can (re) raise an EXCEPTION and propagate it to the next
-- higher level, this problem does NOT raise the EXCEPTION.

PROCEDURE h2 IS
BEGIN

g2

EXCEPTION
WHEN excp ~>NULL

CMU/SEI-92-TR-32 51

WHEN OTHERS -> die
END h2 ;

ss380 h2 ; -- raises EXCEPTION
-- make two PROCEDURE calls. The lowest level does not have an
-- EXCEPTION handler and will simply propagate the EXCEPTION raised
-- to the next higher level, this problem raises the EXCEPTION.

ss383 h2 ; -- EXCEPTION not raised
-- make two PROCEDURE calls. The lowest level does not have an
-- EXCEPTION handler and will simply propagate the EXCEPTION raised to
-- the next higher level, this problem does not raise the EXCEPTION.

PROCEDURE f IS
BEGIN

procO ;
IF ii > 0
THEN

RAISE excp
END IF

END f ;

ss381 DECLARE
BEGIN

XX one ;
f;

EXCEPTION
WHEN excp => NULL
WHEN OTHERS => die ;

END ;
-- Block with exception handler wh2.ch calls on a procedure which
-- raises the exception (the procedure it calls on does not have
-- a handler but simply raises the exception.)
-- --------.------. .

ss384 -- the same as ss381, except that the exception is not raised
-- call on procedure which doesn't propagate exception

PIWG Test Results:

Configuraton 1, PIWG 12/12/87 Release, Tests E000003 and E000004.

Test Name: E000003 Class Name: Exception
CPU Time: 235.5 microseconds
Wall Time: 235.5 microseconds. Iteration Count: 64
Test Description:
Exception raise and handle timing measurement
when exception is raised nested 3 deep in procedure calls

Test Name: E000004 Class Name: Exception
CPU Time: 291.9 microseconds
Wall Time: 292.0 microseconds. Iteration Count: 64
Test Description:
Exception raise and handle timing measurement
when exception is nested 4 deep in procedures

52 CMU/SEI-92-TR-32

Observation 4: ACEC and PIWG tests of exception-raising during task rendezvous.

The rules of Ada state that when an exception is raised within an accept statement (and not handled in
an inner frame,) the same exception is raised again in the called task, immediately after the accept
statement, and is also propagated to the calling task.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, Raw Output.

There is no set of SSA tests for this form of exception, but two tasking tests from the main ACEC suite,
task37a and task37b, show :hat the overhead is (subtracting the task37b result from that of task37a),
approximately, 306 microseconds.

outer loop count
inner loop count I

I I
name size min mean I I sigma

null looptime 0 1.8086E+00 0.1%
task37a

-- Raises a user-defined exception inside a rendezvous.
-- The exception will be propagated to task performing ENTRY call.
-- cf. task37b

48 2050.1 2055.0 4 3 0.2%
task37b

-- This test problem was constructed for comparison with TASK37A
-- Unlike TASK37A, this test problem rendezvous and terminates the
-- task without raising and propagating an exception.
-- Difference between TASK37B and TASK37A is the incremental time
-- to raise and propagate an exception from within a rendezvous.

48 1744.0 1744.0 4 3 0.0%

PIWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Test E000006.

There is a considerable discrepancy between the ACEC result (306 microseconds) and the PIWG result
(221 microseconds). There is no AES test to measure the overhead of an exception occurring during a
rendezvous.

Test Name: E000005 Class Name: Exception
CPU Time: 221.3 microseconds
Wall Time: 220.9 microseconds. Iteration Count: 32
Test Description:
Exception raise and handle timing measurement
when exception is in a rendezvous
Poth the task and the caller must handle the exception

Observation 5: AES exception handling tests.

AES Test Results:

Configuration 1, DIY AES Version 2.0, Test T112.

CMU/SEI-92-TR-32 53

The AES exception-handling test combines a number of tests in a single program. In the final test, a

recursive scheme is used to measure the time to raise and handle an exception that is propagated

through several levels. From these multi-level measurements, the average time to propagate an excep-

tion through just one level is obtained. By comparing the 5-level and 10-level averages shown, it is pos-

sible to determine if the single-level propagation time is invariant or is dependent upon the number of

levels. The 56-microsecond result for this test is consistent with the PIWG result obtained by subtracting

the PIWG E000001 and E000002 results, as discussed in Observation 2. However, the 170-microsec-

ond time to raise and handle an exception locally is more than twice the ACEC and PIWG results for

the same test.

There is no AES test to measure the overhead of an exception occurring during a rendezvous.

I. Group I - runtime Efficiency Tests

1.27. TI12

This test examines the runtime efficiency of exception

handling.

The cpu time taken to raise an exception using a RAISE
statement, and handle it in the same block is 170us.

The additional cpu entry and exit overhead for a

subprogram with an exception handler is Os.

The stack space overhead of calling a procedure
containing an exception handler, compared with calling a
procedure without an exception handler is 0
STORAGEUNITs.

+-----------+----- -+--------------------.

I No. of I Nesting I Cpu time for f
I Levels I Depth I Propagation I
+-----------+----- -+--------------------+

1 5 I 7 I 55.6us I
ifn I 12 1 55.8us I

+-------+------------+--------------------+

References

[Ichbiah] lchbiah, Barnes, Firth, Woodger. Rationale for the Design of the Ada Program-
ming Language. United States Government, 1986.

54 CMU/SEI-92-TR-32

2.7 Generic Units

Question: What is the comparative performance of generic and non-generic units?

Summary: Efficiency of generic units is comparable to non-generic units. For the cases tested for this
report, a conservative assumption is that a generic unit will increase execution time by 5%. In many
cases the generic unit's performance was equal to or exceeded the comparable non-generic version.
Code sharing did not occur.

Discussion: Generic program units allow a single, general version of software to be used for different
data types by the process of instantiation. Generic units offer several possible advantages. An algorithm
can be implemented once and instantiated for different data types, simplifying program construction and
maintenance. In some cases, code sharing may reduce the storage requirements for executing code by
reducing the number of separate units. However, reduced execution speed is often assumed for gener-
ics of all kinds, which argues against their use.

Comparison of matched generic and non-generic procedures indicate that the generic routines are gen-
erally somewhat slower than their custom-coded counterparts (Observation 2 on page 56, Observation
3 on page 58; and Observation 4 on page 59). Generic versions execution speed ranged from -35% to
+6%/6 of the equivalent non-generic routines. The lower execution time noted for generics in Observation
2 is in comparison to "hand-coded" equivalents, and probably represents inefficient hand coding rather
than true improvement due to the use of generics. The effects of generic instantiation vary depending
on the application code however, so these numbers are, at best, representative.

If multiple instantiations of generic routines can share an executable image, storage is conserved com-
pared to multiple hand-coded routines. Tests demonstrate that code sharing is not performed by the
tested VADS compiler version (Observation I on page 55).

The effect of inlining generic routines (Observation 4 on page 59) is ambiguous. For the small number
of tested cases, conflicting results are noted. The effects are small however, so inlining is not consid-
ered harmful, although beneficial effects have not been conclusively demonstrated.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The AES test T009 checks explicitly for code sharing. No code sharing was observed

CMU/SEI-92-TR-32 55

for any of the test scenarios.

(See also the AES tests TI09A-G, which show no code sharing. T109 output is below in Observation 2
on page 56.)

AES Test Results:

Configuration 1, DIY_AES Version 2.0, Test T009.

0. Group 0 - Optimisation Tests

0.9. T009

This test checks on the sharing of code by generic
bodies.

Simple generic procedures tak -' discrete input and
output parameters which are _..stantiated in the same
compilation unit do not share code.

Simple parameterless generic packages which are
instantiated in the same compilation unit do not share
code.

Simple generic packages taking a discrete parameter which
are instantiated in the same compilation unit do not
share code.

Simple parameterless generic packages which are declared
as individual compilation units do not share code.

Generic packages taking a number of generic parameters
which are declared as individual compilation units do not
share code.

Cbservatlon 2: AES tests TI09A-G compare the performance of generic routines and hand-coded
equivalents. Performance of the generic routines varied from 4.5% slower to 35.3% faster. The reported
increase of 35% for TG09F, while impressive, may be an artifact of a low performance hand-coded
version.

AES Test Results:

Configuration 1, DIY_AES Version 2.0, Tests TI09A-G.

I. Group I - Runtime Efficiency Tests

1.18. TI09A

This test assesses the relative efficiency of passing and
using an enumeration type as a generic parameter against
its non-generic equivalent. The test also measures the
cpu time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their
bodies.

Pac.,age instantiation 23.7us
Package execution 1.18ms
Execution of handed-coded 1.09ms

56 CMU/SEI-92-TR-32

equivalent

Separate instantiations of the package do not share code.

1.19. TI09B

This test assesses the relative efficiency of passing and
using an array type as a generic parameter against its
non-generic equivalent. The test also measures the cpu
time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their
bodies.

Package instantiation : 23.3us
Package execution : 299ms
Execution of handed-coded : 313ms

equivalent

Separate instantiations of the package do not share code.

1.20. TI09C

This test assesses the relative efficiency of passing and
using a fixed point type as a generic parameter against
its non-generic equivalent. The test also measures the
cpu time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their
bodies.

Test failed. !STORAGEERROR

1.21. TI09D

This test assesses the relative efficiency of passing and
using a floating point type as a generic parameter
against its non-generic equixalent. The test also
measures the cpu time taken to perform the generic
package. The test determines whether or not
instantiations of the same generic package are able to
share the code of their bodies.

Test failed. !STORAGEERROR

1.22. TI09E

This test assesses the relative efficiency of passing and
using a record type as a generic parameter against its
non-generic equivalent. The test also measures the cpu
time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able to share the code of their
bodies.

Package instantiation : 1.01ms
Package execution : 3.10ms
Execution of handed-coded : 3.09ms

equivalent

CMU/SEI-92-TR-32 57

Separate instantiations of the package do not share code.

1.23. TI09F

This test assesses the relative efficiency of passing and
using a discriminated record type as a generic parame!ter
against its non-generic equivalent. The test also
measures the cpu time taken to perform the generic
package. The test determines whether or not
instantiations of the same generic package are able to
share the code of their bodies.

Package instantiation : 2.63ms
Package execution : 3.33ms
Execution of handed-coded : 5.07ms

equivalent

Separate instantiations of the package do not share code.

1.24. TI09G

This test assesses the relative efficiency of passing and
using a function as a generic parameter against its
non-generic equivalent. The test also measures the cpu
time taken to perform the generic package. The test
determines whether or not instantiations of the same
generic package are able Lo share the code of their
bodies.

Package instantiation : 1.76ms
Package execution : 2.58ms
Execution of handed-coded : 2.57ms

equivalent

Separate instantiations of the package do not share code.

Observation 3: AES use of the GAMM standard shows the performance of a generic instantiation to
be identical to that of the non-generic version (TJ01 vs. TJ07).

AES Test Results

Configuration 1, DIY_AES Version 2.0, Tests TJ01 and TJ07.

,;. Group J - NPL Test Suite

J.1. TJO1

This benchmark test determines the cpu time taken to
perform a set of standard scientific calculations. This
is known as the GAMM standard.

The GAMM standard is 4.95us.

J.7. TJO7

This benchmark test measures the change in the GAM

58 CMU/SEI-92-TR-32

standard caused by using generic instantiations.

There was a 0% increase in the GAMM standard.

Note that the results of this test may be imprecise as
extraneous influences were present.

Observation 4: The two ACEC SSA reports titled "Generic Function Calls - Inline vs. Non-Inline"
examine the behavior of a simple maximum function which is implemented in generic and regular forms,
subjected to inlining and placed at several locations (local, same unit, and external unit). In one test
group, the test makes a single call to the function. In the second, two calls are made, with the return
value of the first call used as a parameter for the second.

The simple function call (one call, no nesting) shows that generic performance ranges from equivalent
to the non-generic forms to somewhat worse. When two calls are nested, the non-generic forms (ss632
and ss143) show the best performance while generic execution time increases from 4 to 6%.

Inlining combined with generics shows mixed results.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Reports "Language Feature Overhead"

"Generic Function Calls - Inline Vs. Non-inline" [tests ss141, ss142, ss621, ss622, ss623,
ss624, ss625 and 226261

"Generic Function Calls - Inline Vs. Non-inline" [tests ss143, ss628, ss629, ss630, ss631,
ss632 and ss633]

Note that test ss633 simplifies the function call, and should be ignored in making comparisons. This

SSA test is marked with the phrase N'Ignore.

Language Feature Overhead

Generic Function Calls - Inline Vs Non-inline

Test Execution Bar Similar
Name Time Chart Groups

ss142 8.19 ***********************

ss625 8.19 ********************

ssl4l 11.10 ********************************
ss621 11.10 * I
ss622 11.10 ******************************* I
ss626 11.30 ****************************w*** I
ss624 11.60 *****************************
ss623 11.80 *********************************

CMU/SEI-92-TR-32 59

Individual Test Descriptions

FUNCTION maxi (x , y :real) RETURN real IS
BEGIN

IF x >= y THEN RETURN x
ELSE RETURN y

END IF
END maxl

ssl4l xx :=maxi (yy , zz);
-- call on local function

ss142 xx :-max2 (yy .zz) ; -- max2 is inline of max!
-- call on local inline furction

ss621 xx :=max3 (yy , zz);
-- generic non-inline function, instantiated in external unit

ss622 xx :-max4 (yy , zz);
-- generic inline function, instantiated in external unit

ss623 xx :-max5 (yy , z
-- generic non-inline fitriction, instantiated in same unit

ss624 xx :-Max6 yy . zz) ;
-- generic inline function, instantiated in same unit

ss625 xx := ax7 C yy , zz);
-- local generic inline function,

3S626 xx :-max8 (yy , zz);
__ local generic non-inline function,

Generic Function Calls - Inline Vs Non-inline

Test Execution Bar Similar
Name Time Chart Groups

ss632 19.60B ************w*.

ss143 20.40
ss629 20.60
ss63O 20.60 *********.***,.

ss631 20.80 t~t******W***~*w*

ss628 21.00 w****************

Individual Test Descriptions

FUNCTION max! (x , y :real) RETURN real IS
BEGIN

IF x >= y THEN RETURN x
ELSE RETURN y

END IF
END maxl.

ss143 xx :=maxl (1.0 , maxl (yy , zz) ;
-- local function where actual parameter contains another

ss628 xx :=max3 (1.0 , rnax3 (yy , zz) C
-- generic non-inline f~nction, instantiated in external unt'

60 CMUISEI-92-TR-32

ss629 xx :- ax4 (1.0 , max4 (yy , zz);
--generic inline function, instantjat~d in external unit

ss630 xx := max5 (1.0, max5 (yy , zz));
-- generic non-inline function, instantiated in same unit

ss631 xx t=max6 (1.0 , max6 (yy , zz);
-- generic inline function, instantiated in same unit.

ss632 xx:=rrx (1.0 , max C yy, zz));
-- language feature test comparison, non-generic non-minie function,

ss633 xx :=Max9 (yy , zz ;
-- language feature test comparison, inline in external package

References

enone

CMU/SEI-92-TR-32 6

62 CMlJ/SE I-92-TR-32

2.8 Inlining of Procedures

Question: What is the effect of inlining procedureE and generic procedures?

Summary: Execution time is generally reduced by inlining, although the gain in performance varies.
Inlining requests are honored by the compiler, but not in all cases. Program size changes due to inlining
were not measured.

Discussion: Ada's pragma INLINE allows procedures to be inserted in the calling program at the point
of the call, avoiding the overhead of transferring control. However, the performance gain must be bal-
anced against the increased program size when multiple copies of routines are created.

An Ada compiler is not required to perform inlining. Likewise, inlining may be performed automatically.
AES test TOOS examines conditions under which inlining is effective (Observation 1 on page 63). The
AES test indicates that inlining is only performed on request, but also that the request is not always hon-
ored.

Both the AES and ACEC results indicate that pragma INLINE is effective in reducing execution time tor
ordinary (non-generic) procedures (Observation 2 on page 64 and Observation 3 on page 66). The ev-
idence for generic procedures is less persuasive (Observation 4 on page 67), but it appears that inlining
generic procedures is somewhat effective. The tests show a fair amount of variation in improved exe-
cution time. This is an expected result, since the time saved reflects the complexity of the call, affected
by such factors as the number, type, and ordering of arguments and method used for passing argu-
ments, not the complexity of the procedure body.

The size effects of pragma INLINE was not measured. Conceptually, the size expansion should be di-
rectly related to the amount of code the compiler produces for the body of the procedure.

ConfIguration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 25e-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES test T005 found that pragma INLINE is honored on demand for "simple
procedures," but not for subprograms "which are difficult to inline." Inlining was not performed
automatically for subprograms which did not contain pragma INLINE.

CMU/SEI-92-TR-32 63

AES Test Results:

Configuration 1, DIY_AES Version 2.0, Test TO05.

O.5. TOOS

This test examines subprogram inlining.

The test determines whether pragma INLINE works under

various conditions and also whether subprograms are
automatically inlined (regaredless ot whether tne proayza
is set). In the followin ý "simple" procedure is one

which has several lines of code in the body but no

exception handlers/blocks etc. and only one or two scalar

parameters.

Inlining is performed for simple procedures declared in
the same compilation unit.

Inlining is performed for simple procedures declared in a
WITHed package.

Inlining is not performed for simple procedures declared
in a WITHed package, when pragma IN- - is NOT set.

Inlining is not performed for routines which are
difficult to inline (e.g. one with complex parameters and
exception handlers etc.), though not unreasonably
difficult.

Inlining is performed for routines which pass on their
(simple) parameters to another routine, with the addition
of extra parameters.

Observation 2: AES test TI10, configuration 1, shows that performance improvements from the use of
pragma Inline are measurable when compared with subprograms that are not inlined.

Results for integer parameters appear reasonable. The remaining tests record execution times of zero
seconds for the inlined routines, which invalidate the comparison to the non-inlined routines. Analysis

of the test source code shows that the calling times are measured for paired procedures. The inlined
version of the pairs lacks anti-optimization code present in the non-inlined version that accesses the

procedure's argument. Although this anti-optimization code is protected from actual execution during
testing, omitting this code allows the compiler to remove all the test code.

AES Test Results:

Configuration 1, DIY_AES Version 2.0, Test TI10.

Note that Most of the inmining tests were removed by optimization (see above). These observations
are marked with the phrase mrlnllnlng results Invalid for the following table.

64 CMU/SEI-92-TR-32

1.25. TIlO

This test examines the runtime efficiency of subprogram
calls, in particular, the passing of scalar and
non-scalar parameters using the "in", "in out", "out" and
"return" modes. The test also determines whether the
parameters are passed by copy or by reference. The
overheads of subprogram entry and exit are included in
the measured costs. The test is performed for INLINEd and
non-INLINEd subprograms.

Test T005 indicates that inlining is performed for some
simple procedures but not for some procedures which are
fairly difficult to inline.

Integer parameters:

+....---....+-....----......--- ------

I Mode I Passing I Cpu I Passing I Cpu I
I Mechanism I Time I Mechanism I Time I
I I (INLINEd) I (INLINEd) I

+--------------------+----+---+ ---- +------

I in I COPY I 7.82us I COPY I 246ns I
i in out I COPY I 5.90us 1 COPY I 5lOns I
I out I COPY I 5.57us I COPY I 253ns 1

I return I 6.04us I - I - 1
4 ----- +---+---------- -+

Unconstrained array parameters (array of 256 integers).

I'lnllnlng results Invalid for the following table
+--------------------4----+---+ ---- +-------

I Mode I Passing I Cpu I Passing I Cpu I
I I Mechanism I Time I Mechanism I Time I

I I I (INLINEd) I (INLINEd) I
+--------------------+----+---+ ---- +---- +--

I in I REF I 7.69us I REF O Os I
I in out I REF I 7.69us I REF I 0s I
I out I REF I 8.6lus I REF I Os I

return I - I 229us I -
+..---..............-----+- -- ----

Constrained array parameters (array of 256 integers):

gilnlining results Invalid for the following table
+--------------------.4----+---+ ---- +-------

I Mode I Passing I Cpu I Passing I Cpu I
I Mechanism I Time I Mechanism I Time I

I I I I (INLINEd) I (INLINEd) I
+..-----------+----------------+.....--------..-+..----- +

I in I REF I 7.23us I REF O Os I
I in out I REF i 6.99us 1 REF I Os i
I out I REF I 6.79us I REF Os I
I return I I 229us I I
----------------------+----+---+ ---- +---- +--

Simple record parameters (record of 256 components):

CMU/SEI-92-TR-32 65

wlnllning results Invalid for the following table
------------------------ - ----

I Mode I Passing [Cpu I Passing I Cpu I

I I Mechanism I Time I Mechanism I Time

J I I I (INLINEd) I (INLINEd) I

+--------------------+----4---+ ---- +----+--

I in I REF I 7.37us I REF I Os I

I in out I REF I 6.86us I REF I Os 1

I out I REF 1 6.79us 1 REF I Os I
I return I - f 233us I - I - I
+--------------------+----+---+ ---- +------

Discriminated record parameters (record of 256

components):

zwlnllnlng results Invalid for the following table
+--------------------+----+---+ ---- +---- +--

I Mode I Passing I Cpu I Passing I Cpu I

I I Mechanism I Time I Mechanism I Time I
I I I (INLINEd) I (INLINEd) I

+--------------------+----+---+ ---- +-------

I in I REF I 6.86us I REF I Os I

I in out I REF I 6.84us I REF 1 0s I
1 out I REF I 6.84us I REF I Os i
I return I - I 234us I I - I
++--- +÷----+-- +- -- ---- +

Observation 3: ACEC Single System Analysis (SSA) report "Function Calls (Inline)" compares several

variations of a procedure. Simple comparison of ss141 (procedure) and ss142 (inlined procedure)

shows that inlining is effective (a 26% decrease in execution time).

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Language Feature Overhead" - "Function Calls (In-
line)."

Language Feature Overhead

Function Calls (inline)

Test Execution Bar Similar
Name Time Chart Groups

ss144 7.94 *********
ss142 8.19 *
ss249 10.20 ****************

ssl41 1I.10 *******************

ss143 20.40 *

Individual Test Descriptions

FUNCTION maxl (x , y : real) RETURN real IS
BEGIN

IF x >= y THEN RETURN x
ELSE RETURN y

END IF ;

66 CMU/SEI-92-TR-32

END maxl ;

FUNCTION max2 (x , y : real) RETURN real IS
BEGIN

IF x >= y THEN RETURN x
ELSE RETURN y

END IF ;

END max2

PRAGMA inline (max2 I

PROCEDURE pmax (a : OUT real b , c IN real) IS
BEGIN

IF b >= c THEN a b

ELSE a c
END IF ;

END pmax;

ssl4l xx :- maxl (yy , zz) ;
-- call on local function

ss142 xx :- max2 (yy , zz) ; -- max2 ic inline of max!
-- call on local inline function

ss143 xx :- maxl (1.0 , maxl (yy , zz)) ;
-- Call function where accual parameter contains another

ss144 IF yy >- zz THEN xx := yy ; ELSE xx :- zz ; END IF
-- example of textual substitution to compare to ss142

ss249 pmax (xx , yy , zz) ;
-- procedure equivalent to function Maxl

Observation 4: ACEC Single System Analysis (SSA) report "Language Feature Overhead" compares
inlined procedures for regular and generic procedures. The paired tests ss621 and ss622, external
instantiation, (0% improvement), and ss623 and ss624, same unit, but not local (2% improvement)
show slight execution time decrease for inlined generic procedures over non-inlined generic
procedures. Tests ss625 and ss626, local declarations, show a larger time decrease (28%
improvement) when the generic procedure is inlined. The location of the generic seems to be significant.

ACEC Test Resufts:

Configuration 1, ACEC Release 2.0, SSA Report "Language Feature Overhead" - "Generic Function
Calls - Inline vs. Non-Inline."

Language Feature Overhead

Generic Function Calls - Inline Vs Non-inline

Test Execution Bar Similar
Name Time Chart Groups

ss142 8.19 *********************

ss625 8.19 **********************

ssl4l 11.10 *********1********************* I
ss621 11.10 1 I

ss622 17.10 1

CMUISEI-92-TR-32 67

ss626 11.30
ss624 11.60
ss623 11.80

Individual Test Descriptions

FUNCTION maxi (x , y :real) RZTURN real IS
BEGIN

IF x >= y THEN RETURN x
ELSE RETURN y

END IF
END maxi

ssl4l xx ;-maxI (yy , zz);
-- call on local function

ss142 xx :- ax2 (yy , zz) ;-- max2 is inline of maxi
-- call on local inline function

ss621 xx -.= ax3 (yy , zz) ;
-- generic non-inline function, instantiated in external unit

ss622 xx -- max4 (yy , zz);
-- generic inline function, instantiated in external unit

ss623 xx :=max5 (yy , zz) ;
-- generic non-inline function, instantiated in same unit

ss624 xx :=max6 (yy , zz);
-- generic inline function, instantiated in same unit

ss625 xx :-max7 C yy , zz);
-- local generic inline function,

ss626 xx :- max8 (yy , zz) ;
-- local generic non-inline function,

References

*none

68 CMU/SEI-92-TR-32

2.9 Logical Tests

Question: What are the performance trade offs between the case statement and It statement?

Summary: Relatively little performance data is available to compare the logical statements (case and
if). The available data suggest that the case statement has slightly better performance and that the
compiler c.ptimizes logical statements effectively. Coding large logical tests as tables or Boolean arrays
may improve performance.

Discussion: Ada provides several statements which alter program flow based on the results of evalu-
ating an expression. The If and case statements are commonly used to alter the flow of program exe-
cution within a task. The If statement provides more flexibility in defining the logical test, but the two
statements are often semantically equivalent and equally clear. The application programmer therefore
can select between the two statements based on considerations of clarity of expression and perfor-
mance.

Primary performance considerations for logical expressions are speed of execution and the amount of
storage required. Execution speed should consider both the average speed and the variation in speed.

Other considerations include:

" How does the number of alternatives affect performance of the statements?

The algorithm being implemented may require choosing between only two altema-
tives or between hundreds. Performance testing should characterize the range of
small to large number of alternatives.

"* How does distribution of the alternatives affect performance?

The logical test may select among closely spaced, well ordered alternatives or the
alternatives may be sparsely and randomly distributed. For example, if 100 alterna-
tives were present in the test, there may well be a performance difference when the
choices range consecutively from 1 to 100 versus 100 choices which are randomly
distributed between 1 to 1,000,000. The number of alternatives is the same, but the
internal representation of the selection might vary. The case statement, in particular,
can benefit from the generation of optimal selection strategies (e.g., jump table,
hashed jump table, sequence of comparisons, etc.).

" Do special forms of logical expression allowed for If statements increase speed?

The case statement limits the test expression to discrete types and the choice on the
case statement alternatives (when) to discrete values or ranges. The It offers a num-
ber of variants for equivalent logical expressions. An If can mimic the equivalent
case statement or use a different form that achieves the same result (for instance,
by using the short circuit operators and then and or else, which have been identified
as introducing performance variation).

" Does the method(s) used to nest the statements affect performance?

When there are many branches in the logical test, If statements can be nested or ex-
tended without nesting using the elsif clause. Similarly, the case statement can be
nested.

CMU/SEI.92-TR-32 69

* Do alternative test methods, such as table look up, offer performance advantages?

If a large or complicated branching structure is required, space or time savings
achieved by programming a specific test may become important. Preparing tests tai-
lored to the problem can use regularities in the data that the Ada compilation system
might not generate automatically. The use of a table look up, indexed by the results
of an expression, might be more efficient than the use of a case statement.

To compare the performance of logical statements, the ideal test set would compare matched sets of

case and If statements, measure the range of variation as well as provide average values for the tests,

and provide both time and space measures. Unfortunately, the standard benchmark suites used for this

report do not provide many head-to-head comparisons between If and case statements in their current

versions.

The AES SSA report compares several alternate logical tests in the two "Test For Letter Being A Vowel"

entries (Observation 4 on page 75). For these tests, the case statement is 23% faster than the If state-

ment,

Several case statements are timed, and the results presented in the AES report entry titled "Case State-

ments." The case statements are not comparable to each other, nor are the equivalent If statements

provided. This entry seems mostly useful for comparing different Ada compilers.

Observations relevant to other considerations:

" How does the number of alternatives affect performance of the statements?

The AES Test TG19 (Observation 1 on page 71) notes that "at least 5000" alterna-
tives are allowed for case statements. AES Test TG32 (Observation 1 on page 71)
notes that the case statement permits static nesting of "at least 100" deep.

AES test TG33 (Observation 1 on page 71) notes that the If statement can be stati-
cally nested "at least 100" deep. The AES test TG36 (Observation 1 on page 71)
notes that "at least 100" elslf parts are permitted.

For each of the four tests, the VADS compiler handled the largest test case.

" How does distribution of the alternatives affect performance?

The AES T017 test (Observation 2 on page 72) examine how the compiler handles
the translation of case statements for various distributions of alternatives. The test
indicates that at least two different forms of representation are used: a jump table for
contiguous ranges of choices and a sequernce of comparisons for discontiguous
ranges. Tests for other forms of representation produced indeterminate results. This
suggests that the compiler optimizes case statements using contiguous discrete val-
ues and ranges using conceptually efficient strategies. No timing comparison data or
size measurement is provided.

" Do special forms of logical expression allowed for If statements increase speed?

The ACEC SSA report includes a test of one short circuit operator for the If state-
ment and compares several pairs of If statements performing the same test using dif-
ferent encodings of the logical expression (see Observation 3 on page 73).

70 CMU/SEI-92-TR-32

The and then short circuit control form was measured to take somewhat more time
than the equivalent nested version (and then prevents evaluation of the second term
of an expression if the first is false). The measured difference suggests that the and
then can be used for clarity, but that it does not offer improved performance.

The "Simple Relations" tests (Observation 3 on page 73) test a pair of If statements
that have equivalent effect using reversed logical expressions. The timings were
substantially the same.

"* Does the method(s) used to nest the statements affect performance?

No data available.

" Do alternative test methods, such as table look-up, offer performance advantages?

The AES SSA compares several alternative logical tests in two comparisons, both
titled "Test For Letter Being A Vowel" (Observation 4 on page 75). Using a Boolean
array is faster than either the if or the case statement, while using function calls is
slower than the two logical statements.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The tests in this observalion examine limits on the if and case statements.

The AES TG test series examines the compiler for limits that might constrain the user. The stated test
objective is to detect unreasonably restrictive characteristics, such as a very small number of enumer-
ation literals, not to find the compiler's maximum capacity. The tests use a relatively coarse binary chop
algorithm to determine approximate limits in a reasonable amount of time. When the key phrase "at
least" is used, the compiler capacity is greater than the maximum tested value.

AES Test Results:

Configuration 1, DIYAES Version 2.0, Test TG19, TG32, TG33 and TG36.

G.22. TG19

This test detects whether there is an unreasonably small
limit to the number of alternatives in a case statement

permitted by the compiler,

The number of case statement alternatives was found to be
at least 5000.

CMUISEI-92-TR-32 71

G.34, TG32

This test detects whether there is an unreasonably small
limit to the number of statically nested case statements
permitted by the compiler in a compilation unit.

The number of statically nested case statements was found
to be at least 100.

G.35. TG33

This test detects whether there is an unreasonably small
limit to the number of statically nested if statements
permitted by the compiler in a compilation unit.

The number of statically nested if statements was found
to be at least 100.

G.38. TG36

This test detects whether there is an unreasonably small
limit to the number of elsif parts to an if statement
permitted by the compiler.

The number of elsif parts was found to be at least 100.

Observation 2: The tests in this observation check how case statements are represented.

AES Test Results:

Configuration 1, DIYAES Version 2.0, Test TO1 7A-F.

0.17. T017 group of tests

There are six tests in this section. Their purpose is to
examine 'case' statements with various distributions of
alternatives to see if the compiler optimises them in the
way one would expect.

Test TO17A examines a 'case' statement with an ordered
contiguous range of alternatives. One would expect the
compiler to implement this as a jump table.

The timings produced by this test indicate that the
compiler implements a jump table.

Test TO17B examines a "case- statement with a disordered
contiguous range of alternatives. One would expect the
compiler to implement this as a jump table.

The timings produced by this test indicate that the
compiler implements a jump table.

72 CMU/SEI-92-TR-32

Test TO17C examineb a "case" statement with an ordered

contiguous set of ordered contiguous ranges of

alternatives. One would expect the compiler to implement
this as a sequence of comparisons.

The timings produced by this test indicate that the

compiler implements a sequence of comparisons.

Test TOI7D examines a "case" statement with a sparse

random range of alternatives. One would expect the

compiler to implement this as a binary chop.

Test failed. Aborted by user request
TEST.TST did not set RESULTANT STATE

Bw Note: Test appeared to run Indefinitely.

Test TOI7E examines a 'case' statement with a dense

random range of alternatives. One would expect the

compiler to implement this as a hashed jump table.

The timings produced by this test indicate that the

compiler implements a jump table.

Test TOI7F examines a 'case' statement with few explicit

choices and most of the alternatives in 'others'. One
would expect the compiler to implement this as a sequence
of comparisons.

The timings produced by the test were too inconclusive to
suggest any particular method.

Observation 3: The ACEC compares several pairs of logically equivalent If statements. Each pair

produces the same logical result by different means.

The and If short circuit operator is slower than a nested Hf pair. Use of a not to reverse a test result is

slower than reversing the sense of the test (presumably the reversed test benefits from requiring one

fewer logical operation).

ACEC Test Resufts:

Configuration 1, ACEC Release 2.0, SSA Reports "Coding Style Variations":

"* "Nested IF vs. AND THEN"

"* "Simple Relations" [Tests ss494 and ss495]

* "Simple Relations" [Tests ss497 and ss496]

Coding Style Variations

Nested IF vs AND THEY

CMU/SEI-92-TR-32 73

Test Execution Bar Similar

Name Time Chart Gr oups

ss490 4.02 *

ss491 4.69 **

Individual Test Dlescriptions

ss490 FOR 1 IN 1. .2

LOOP

IF ii = 0

THEN

IF boo!

THEN

die

END IF;

END IF;

ii 1= - ii;
END LOOP;

ss491 FOR i IN 1. .2

LOOP

IF ii -0 AND THEN bool

THEN

die;

END 1F;

ii := I - ii;

END LOOP;

Simple Relations

Test Execution Bar Simiar

Name Time Chart Groups

zs494 0.77 ************

ss495 1.08 *****************

Individual Test Descriptions

ss494 IF 11 - mm THEN die; END IF;

ss495 IF NOT (11 /- mm)THEN die; END IF;

Simple Relations

Test Execution Bar Similar
Name Time Chart G;rocups

ss497 4.28 ... **** *** *** -*.

s464.39************** ***.***...

Tndividual Test D~escriptions

W 6IF NOT HoclAD1 - mr~r 7HN diec; EL.SE prn ;EN F

W97 :1 c MW OR K V m THE pro~cG EuLSEF dip EN t

74 GCtJSEJ 9? TH 32

Observation 4: The ACEC compares logical tosts by implementing the same test with different logical
statements. Case and If statements are compared along with some additional test methods. All the
tests perform a logical test to determine if a single character is a vowel.

The case statement is faster than the It statement, and both are slower than a table lookup.

ACEC Test Results:

Configuration 1, ACEC, Version 2.0, SSA Report "Coding Style V/ariations"

"* "Test for Letter Being a Vowel" [Tests ss486, ss488, ss489, ss492 and ss487]

"* "Test for Letter Being a Vowel" fTests ss479, ss482, ss48 1, ss493 and ss48OI

Coding style Variations

Test For Letter Being A Vowel

Test Execution Bar Srim i ar
Name Time Chart Groups

ss486 1.55
ss488 2.50 ********

ss489 3.25
ss492 3.58 ****.* ***n***

ss487 4.50 *i~***t*t*t*****

Individual Test Descriptions

ss486 bool :-is-a-vowel_1 (char) ; -- array

ss487 bool :-is-a_vowel_2 (char); -- local function

ss488 CASE char IS
WHEN 'A' f'E'(01' MO' MU' => bool :=True;
W14EN OTHERS => bool :=False;

end case;

ss489 bool :=char='A' 0R char='E' OR char='I' OR charý'O' OR char='U';

33492 boo : is-a-vowel_3 (char); -- function in external package

Test For Letter Being A Vowel

Test Execution Bar slr'ilazz
Name Time Chart Groujps

ss479 80.90 * * *

ss482 1130.60 * * *

ss481 126.00**

s5493 i78.80

ss48O 186.1111 ******* * * * *

Individual Test Descript icns

CMU/SEI-92-TR-32 75

ss479 char := 'A';
WHILE char <- 'Z'

LOOP
IF is a vowel 1 (char THEN procO; END IF;

-- is a vowel I is boolean array of char
char :- character'succ (char);

END LOOP;

ss480 char := 'A';
WHILE char <= 'Z'

LOOP
IF is a_vowel 2 (char ? THEN procD; END IF;

-- is a vowel 2 is local function returning boolean
char := character'succ (char C;

END LOOP;

ss48l char := 'A';
WHILE char <- 'Z'
LOOP

IF char='A' or char='E' or char='I' or char-'O' or char='U'

THEN proc0;
END IF;

char - character'succ (char);
END LOOP;

ss482 char := 'A';
WHILE char <- 'Z'
LOOP

CASE char IS
when 'A' I'E' 'I' 'O' 'U' -> procO;
when others->null;

END CASE;
char :- character'succ (char);

END LOOP;

ss493 char :- 'A';
WHILE char <- 'Z'
LOOP

IF is a vowel_3 (char) THEN procO; END IF;
-- is_a vowel 3 is function in external package

char := character'succ (char);
END LOOP;

References

none

76 CMU/SEI-92-TR-32

2.10 Loop Efficiency

Question: Do different loop constructs vary in efficiency?

Summary: The most efficient loop construct is the for loop (forward or reversel. Loop exit and

optimizations are discussed below.

Discussion: Ada provides several statements which can be used to construct loops. These irn.ztude for,
while, loop, and goto based loops. Since the loops can be made equivalent, the application program-
mer can select the appropriate construct based on considerations of style and performance.

Performance of comparable loop constructs should explore raw speed and the variation caused by dif-

ferent forms of indices.

Available tests performing direct comparison of likely loop constructs conclude that the for loop (for-
ward and in reverse) is the fastest loop construct. However, unrolled loops are even faster. The avail-
able tests do not explore variation in the range specification adequately.

Observation 2 explores some loop optimizations. Optimization necessarily exploits a large number of
techniques, which apply to special cases. Of particular note for high performance applications, loops
are not unrolled, which suggests that hand-unrolling may be a useful tactic for maximum performance.
However, tests on arrays with loop assignment compared to hand-unrolled equivalents suggests that
execution speed for hand-unrolled array operations should be checked for individual cases rather than
assuming hand-unrolled loops for arrays will reduce execution time (see Arrays on page 7).

Observation 3 shows that the exit statement is the most effective means of short-circuiting a loop.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: Both ýhe AES and ACEC measure the performance of loop constructs and compare
their execution speed. Both conclude that the for loop is the fastest loop construct for configuration #1.

The ACEC Single System Analysis (SSA) report compares times for several styles of loops repetitively
calling a procedure (included below). The best time value is for an "unrolled" loop (i.e., no loop, a series
of procedure calls). The best times for actual loops are for for loops in forward and reverse directions.
These results are for small loops with constant loop parameters. The design used mkaFs.ures the exe-
cution time for the whole execution of the loop for a fixed number of iterations.

CMU/SEI-92-TR-32 77

The AES test T11l compares four loop constructs (see below). The for loop is the most efficient con-

struct. The test design attempts to measure only the execution time for a single loop iteration, factoring

out the time used to initialize and exit the loop. The test loop parameters are based on the clock reso-
lution, rather than having a fixed value. (The loop iteration value varies according to the clock resolution,

rather being a value fixed at compilation.)

ACEC Test Results:

Configuration 1, ACEC Release 2.0, Tests TI02A-F.

Coding Style Variations

LOOP variations

Test Execution Bar Similar
Name Time Chart Groups

ss642 22.10 *

sslos 27.40 *
ss381 27.50 ***********

ss385x 30.60 **********ir***********

ss183 30.90 ************************
ss182 32.00 ******t*************t***
ss386 36.60 ******w**s************.****.**

ss385 36.70 *************** *********
ss184 37.80 *

Individual Test Descriptions

ssl05 FOR i in 1..10 LOOP procO ; END LOOP ;

ssI2 ii := 10 ;
LOOP proc0 ; ii :- ii - 1 ; EXIT WHEN ii <- 0

END LOOP ;

ss183 ii :1 10 ;

LOOP proco ; ii := ii 1 ;
IF ii <= 0 THEN EXIT ; END IF

END LOOP ;

ss184 ii := 10 ; procO ; ii -- ii - 1 ;
LOOP EXIT WHEN ii <- 0 ; procO ; ii := ii - 1

END LOOP ;

ss385 ii := 10 ;
WHILE ii > 0 LOOP procO ii =i - 1

END LOOP ;

ss385x ii := 10 ;

<<label_ for_gotoversion>>
procO ; ii := ii - 1 ;

IF ii > 0 THEN GOTO label for gotoversion ; END IF"

ss386 ii := 10 ;

LOOP EXIT WHEN ii <= 0 ;pro i i - 1 -

END LOOP

ss387 FOR I IN REVERSE 1_,0 . iOOP proc0 1.O

78 CMU/SEI-92-TR-32

ss642 procO ; ... procO -- sequence of 10 procedure calls

AES Test Results:

Configuration 1, DIYAES Version 2.0, Tests TI02A-F.

1.26. Till

This test examines the runtime efficiency of loop
statements. The time per iteration for each of the four
types of loop, using integer loop control variables is
measured.

+---...........------------------

SType of loop I Cpu Overhead I
I I per iteration I
------------- +---------------------+

I Simple loop I 1.66us I
I WHILE loop 1 1.6lus 1
I Forward FOR loop I 409ns I
I Reversed FOR loop I 5 7 3ns I

+ ---------------- +---------------------+

Observation 2: Both the ACEC and AES test suites provide information on the various loop

optimizations (see included text below).

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Optimization:"

"• "Loop Unrolling," page 79

"• 'Loop Flattening : 2 Dimensional Arrays of Real," page 80

"* "Loop Invariant Motion" [Tests ss212 and ss3], page 80

"* "Loop Invariant Motion" [Tests ss429 and ss430], page 81

"* "Loop Invariant Motion" [Tests ss536 and ss535], page 81

"* "Loop Invariant Motion" [Tests ss752 and ss1l], page 81

"* "FOR LOOP with NULL Body," page 82

Opt imi zat ions

Loop Unrolling

Test Execution Bar Similar
Name Time Chart Groups

ss238 0.78 *******t*****
ss3 0.78 ***'**t*******

ssl7 1.41 ********************

ss57 1.42 ********************

CMU/SEI-92-TR-32 79

ss240 2.07 *********,.**.*****,**

Individual Test Descriptions

ss3 xx i= yy ;
-- Assignment of two floating point variables, library scope.

ssl7 el (ei) := one ;
-- assignment to one dimensional array of real.

ss57 el (i) :- one ; -- i is LOOP index
-- Test subscript computation using FOR LOOP index.

ss238 FOR i IN I..1 LOOP el (i) := one ; END LOOP
-- can unroll LOOP into single assignment statement

-- simple example amenable to LOOP unrolling

ss240 FOR i IN 1..2 LOOP el (i) == one ; END LOOP
-- simple example amenable to LOOP unrolling

Loop flattening : 2 Dimensional Arrays Of Real

Test Execution Bar Similar
Name Time Chart Groups

ssl8 3.96 *

ss405 156.40 * I

Individual Test Descriptions

If time to execute ss405 is less than 100 times the time to execute
ssl8, then the compilation system is treating subscript calculations
using for loop indexes better than general usage. May be using
strength reduction, register allocation, or other techniques including
loop flattening. Flattening is the merging of the two nested loops
into one larger loop.

e2 : ARRAY (int' (1)..int' (10) ,int'{l(1.int' (10)) OF real
:= (int' (I)..int' (I0) =;ý(int (i) .. int' (i0) =>i.0));

ei, ej, ek int 1;

ssl8 e2 (ei, ej) :- one ;
-- assignme-,L to two dimensional array of real. Checking.

ss405 FOR i IN 1 .. 10 LOOP

FOR j IN 1 .. 10 LOOP
e2 (int (i), int (J)) one

END LOOP
END LOOP ;

-- nested FOR loop to access a 2D array -- loop- could be flattened

Loop Invariant Motion

Description Optimized?

Time : ss212 (9.9) vs ss3 (0.8) no

80 CMU/SEI-92-TR-32

ss212 FOR i IN 1.-10 LOOP xx :- yy ; END LOOP

--example where invariant motion is possible

ss3 x := yy ;

Loop Invariant Motion

Description Optimized?

Time :ss429 (3.2) vs ss430 (3.2) yes

FUNCTION al (i : mt) RETURN intl IS
cal :CONSTANT ARRAY (int (0) . .int' (2)) OF int : (0, 1. 2

BEGIN
RETURN cal (i

END al ;

ss429 ii :=al (ei);
-- Is constant static array promoted to outer level?

ca2 :CONSTANT ARRAY int' (0) ..int' (2)) OF mnt :=(0, 1. 2)
FUNCTION a2 (i :mt) RETURN intl IS
BEGIN

RETURN ca2 (i
END a2 ;

ss430 ii.: a2 (ei) ; --non-local constant array
-- Is constant static array promoted to outer level?

Loop Invariant Motion

Description Optimized?

Time :ss536 (283.1) vs ss535 (91.7 nostatistics

ss536 FOR 1 IN 1. .mm LOOP
xx :=0.0 ;
FOR k IN el'RANGE LOOP

xx :=xx + el (k) *2

END LOOP;
END LOOP ; -- xx is computed from invariants in 1'V loop

-- very smart optimizer can do inner loop once

ss535 xx :=0.0;
FOR k IN el'RANGE LOOP

xx :=xx + el (k) ** 2
END LOOP ; -- sample to embed in code for ss536

Loop Invariant Motion

Description Optimized?

Time ;ss752 (9.9) vs ssll C 0.8) nostatistics
--

CMU/SEI-92-TR-32 81

ssm52 FOR i IN 1.10 LOOP ii :j END LOOP

-- could be optimized into an assignment statement, ssll

3sal kk :-11 ;-- Library scope integer assignment.

FOR, LOOP with NULL body

Description Optimized?

Time : siDE (5.8) vs sso (0.0) nostatistics

ssiO6 FOR i IN 1.-10
LOOP

NULL
END LOOP -- noop

-- FOR loop with null body, could be noop.

ssD NULL;

AES Test Results:

Configuration 1, DIYAES Version 2.0, Tests T103.

0.3. TOtC3

This test checks loop optimisations.

Some loop invariant array addressing expressions are
hoisted out of the body of a loop.

Some loop invariant statements are hoisted out of the
body of a loop.

Simple loops iterating twice are not unrolled.

Simple loops iterating three times are not unrolled.

Constraint checks are not removed from the body of a
loop.

Observation 3: The ACEC tests the efficiency of various methods for exiting loops. The exit statement
with logical test was more efficient than either an If statement enclosing a simple exit or a goto
statement.

The condition for exit was a simple "greater than" test.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Language Feature Overhead" - "EXIT from FOR
LOOP."

82 CMU/SE I-92-TR-32

Language Feature Overhad

EXIT From FOR LOOP

Test Execution Bar Similar

Name Time Chart Groups

ss354 3.49 1**************

ss355 4.12 ***t~*****~~

ss356 4.15 1

Individual Test Descriptions

Alternative methods of specifying the same actions.

ss354 FOR i IN 1. .ej

LOOP

procO

EXIT WHEN 11 > 0
END LOOP;

-- EXIT from FOR LOOP with "EXIT WHEN"

ss355 FOR i IN 1. .ej

LOOP

procO;

IF 11 > 0
THEN

EXIT

END IF;

END LOOP

-- EXIT from FOR LOOP with "IF ... THEN EXIT"

ss356 FOR i IN 1. .ej

LOOP

procO

IF 11 > 0

THEN

GOTO q

END IF;

END LOOP;

<<q>> NULL

-- EXIT from FOR LOOP with "IF ... THEN GOTO"

References

*none

CMU/SEI-92-TR-32 83

84 CMUfSEI.92-TR-32

2.11 Module Size

Question: Is the performance of a program divided into modules different from a monolithic design?

Summary: Compared to a monolithic design, the execution time of a modular program can be
expected to increase to accommodate the costs of calling the procedures used for partitioning. The
percentage increase could not be quantified, since it depends upon the application. No information
about the size effects of module use is provided. Compiler support for partitioning of a program into
modules was measured statically. There are no limitations detected in compiler support.

Discussion: While the division of programs into modules is recommended for program clarity and
maintainability, there may be performance consequences. If, for instance, division into smaller modules
adds a significant number of procedure calls, the execution time may increase. The use of procedures
might reduce program size by allowing more code sharing, or increase it due to additional code inserted
for procedure calls.

Issues relating to the use of modules include:

"* Is the number of modules supported by the compiler limited?

"* How does performance change for programs using smaller modules?

"* How is program size affected by use of small modules?

Comilier Limits

When numerous modules are used for a large software program, limits may be found in the compilation
system. Some limits relate to the exhaustion of finite physical resources, such as secondary storage or
system memory, while other limits might be caused by fixed sizes in the compilation system itself. De-
tecting such limits reliably is difficult and expensive, since host system configurations are complex com-
binations of hardware and software.

Observation 1 on page 87 presents the results of limit testing which are relevant to modules. There are
no observed limits which strongly preclude the use of modules. These tests do not attempt to overload
the library system, and, therefore, do not predict the maximum possible program size.

Performance

Performance change due to the use of modules is conventionally addressed by measuring the over-
head of entering and leaving the module (procedure). This cost varies with the complexity of the proce-
dure call and is a combination of overhead relating to the transfer of control and the amount and type
of data which are transferred.

CMU/SEI-92-TR-32 85

Observation 2 on page 88 provides information on overhead, and Observation 3 on page 95 presents

some supplemental information on the number of parameters. Some fairly obvious conclusions can be

drawn from this data:

"* The time required to call a procedure varies with the type of procedures.

"* The time required to call a procedure increases as the amount of data transferred
increases.

The percentage change in execution time caused by modules cannot be determined solely from mea-

surement of calling overhead. If we assume that the time required to switch to a procedure is indepen-

dent of the time required to complete the work within a procedure, the time overhead for dividing a

program into small modules clearly relates the amount of work done by each module compared to the

number of times a module is called. Thus the overhead of procedures can only be calculated when the

execution times for procedure bodies is known or reliably estimated and the calling profile for the pro-

gram is known. This information is not available for this report.

From the measurement of procedure overhead, the performance cost of using modules is minimized by:

"• Picking subdivision points to minimize the number of calls. (Inlining should be
considered for frequently called smaller procedures.)

"• Keeping the number of arguments as small as possible, using constrained types
where possible.

"* Avoiding trivial procedure bodies: the procedure should perform an appreciable unit
of work. This requirement can be relaxed if inlining is used.

The placement of procedures locally or in packages external to the test routine does not appear to have
a strong effect on performance.

The performance effects of using common data areas to avoid passing arguments to procedures was
not examined. Since Ada procedures are fully reentrant and potentially callable from multiple tasks, this
expedient should be carefully considered before use.

Saze

Program size can be changed by subdivision. Subdivision adds extra code and storage for movement
between modules but reduces program size when code can be shared. The use of inlining and generic
procedures also can alter the size of a program.

Size issues were not tested during the preparation of this report.

Generics and Inllnlna

The behavior of inline and generic routines is addressed in other segments of this report. The speed of
inlined procedures approaches that of user-prepared inline code, while generic units impose a small but
measurable increase in execution speed. No information was collected on size effects of inlining or ge-
nerics.

86 CMU/SEI-92-TR-32

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The AES provides limit testing, including some tests relevant to the use of modules.
None of the limit tests attempts to stress the capacity limits of the compiler. No unreasonably small limits
were detected.

AES Test Results:

Configuration 1, DIY_AES Version 2.0, Group G, Tests TG07, TGO8, TG24, TG25, TG26, TG28 and
TG30.

G. Group G - Compiler Capacity Tests

G.P. TG07

This test determines whether there is an unreasonably
small limit to the number of WITHed units in a
compilation unit.

The number of WITHed units was found to be at least 50.

G.9. TGO8

This test determines whether there is an unreasonably
small limit to the number of USEd units in a compilation
unit.

The number of USEd units was found to be at least 10.

G.26. TG24

This test detects whether there is an unreasonably small
limit to the number of subprograms permitted by the
compiler in a compilation unit. The test is performed
with equal numbers of parameterless procedures and
functions.

The number of subprograms was found to be between 212 and
324.

G.27. TG25

This test determines whether there is any unreasonably
small limit to the number of packages permitted by the
compiler in a compilation unit.

CMU/SEI-92-TR-32 87

The number of packages was found to be at least 50.

G.30. TG28

This test detects whether there is an unreasonably small
limit to the number of statically nested subprograms
permitted by the compiler.

The number of statically nested subprograms was found to
be between 32 and 43.

G.32. TG30

This test detects whether there is an unreasonably small
limit to the number of statically nested subunits
permitted by the compiler in a compilation unit.

The number of statically nested subunits was found to be
between 10 and 21.

Observation 2: Numerous tests of procedure call overhead are provided by the test suites. Their
results are provided below.

The location of the procedure (local or external) does not appear to have a large effect on performance.
The amount of data transferred as parameters has a large effect on calling speed, while the type of ar-
gument has some effects, However, in comparing the type of arguments, size effect, exemplified by the
actual number of storage units transferred, should be considered. For instance, the ACEC report "Call
Procedures with multiple parameters" (page 91) compares calls using 8 integer and 8 floating point ar-
guments. To compare the tests, definitions of the two types Int and real must be examined (for the Ver-
dix compiler, the definitions could be represented by 4 bytes each).

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Language Feature Overhead":

"* "Function versus Procedure," page 88

"* "Procedure Calls with Null Body," page 89

"* "Subprogram Calls - Formal Generic Procedure," page 90

"* "Subprogram Calls - Call Local Nested Procedure," page 90

"* "Call Procedures with Multiple Parameters," page 91

"* "Subprogram Calls - Parameters: Unconstrained Formal," page 91

"* "Subprogram Calls-Parameters Unconstrained Array Parameter," page 91

"* "Subprogram Calls-Parameters Constrained Record Parameter," page 92

Language Feature Overhead

Function versus Procedure

Test Execution Bar Similar

88 CMU/SEI-92-TR-32

Name Time Chart G rouaps

33247 9.98 **tt***f

ss248 20.10-*w*..t~aws~

Individual Test Descriptions
--

This test compares returning a function value and an out mod

parameter from a procedure.
--

TYPE rec -array IS ARRAY (int' (l)..int' (4))OF byte

SUBTYPE c2 IS string (1. .2
subtype cS is string (1.-8
ccc , hex :c8;

FUNCTION f I x :real) RETURN c8 IS

BEGIN
IF x > 0.0 THEN RETURN ' ;

ELSE RETURN
END IF

END f;

PROCEDURE p (x ;IN real c OUT c8)IS

BEGIN
IF x > 0.0 THEN c

ELSE c
END IF;

END p;

ss248 p (one , ccc);
-- procedure which returns string

ss247 ccc :-f (one);
-- function which returns string

Procedure Calls With Null Body

Test Execution Bar Similar

Name Time Chart Groups

ss0 0.00
ss36 2.30 t
ss260 2.51

Individual Test Descriptions

PROCEDURE n IS
BEGIN

NULL
END n ;

saD NULL;

-- Language feature test, null statement

ss36 procO

-- call on external null procedure

ss260 n ;

-- local procedure call, body is null

CMU/SEI-92-TR-32 89

Subprogram Calls - Formal Generic Procedure

Test Execution Bar Similar

Name Time Chart Groups
---- ---

ss36 2.30 .**.*.**t**

ss478 3.36 .*.**aww*** * **

---- ---

Individual Test Descriptions
---- ---

ss36 procO

-- call to library scope~ procedure with no parameters; body 'Is null..
--

ss47B p0467tO4;
-- call procedure which is a generic formal parameter. The actual

-- procedure is procO; an exteznal procedure with a null body.

---- --- -----------------------

---- ---

Subprogram Calls - Call Local N.ested Procedure
---- ---

Test Execution E':: similar

Name Time Chart Groups

---- ---
ss361 4.32 ***tW*******

.ss360 4.69 I
--

Individual Test Descriptions
---- ---

PROCEDURE LO IS -- same body as 1.2, but at different

BEGIN -~structural level from it's calling point

procO;
END LO0;

PROCEDURE Li IS
PROCEDURE L2 IS
BEGIN

procO;
END L2;

PROCEDURE L3 is
PROCEDURE L4 IS
BEGIN

PRAGMA include ("startimel);
L2;

PRAGMA include (stoptimeOl);
put('ss361 L2; -- null procedure at non-main nesting level');
PRAGMA include (stoptime2");

END L4;
BEGIN -- body of L3

L4;
END L3;

BEGIN -- body of Li
L3;

END Li;

ss360 LO ;

-- call local procedure

ss361 Li

-- call null procedure at non-main nesting level

90 CMU/SEI-92-TR-32

Call. Procedures with multiple parameters

Test EXecution Bar mia
Name Time Chart Groups

ss584 9.67
SS585 38.30 **********t**sW**

Individual T'est Descriptions

PROCEDURE pi8 (il i 2 , 13 , i4 , 5 ,i6 ,i7 ,ig IN int) IS
BEGIN

ii :=il + i2 + i3 + i4 + J5 + 16 +i7? + J8

END pi8;

PROCEDURE pfS (fl , f2 , f3 ,f4 , f5 ,f6 ,f7 , f8 IN real~ IS
BEGIN

xx :=fl + f2 + f3 + f4 + f5 + f6 + f7 + f8
END pf8;

ss584 pi8 (1 , 2 , 3 ,4 , 5 , 6 , 7 , 8)
-- call procedure with 8 integer parameters

ss585 pfS (1.0 , 2.0 , 3.0 , 4.0 , 5.0 , 6.0 , '7.0 , 8.0
-- call procedure with 8 float parameters

Subprogram Calls - Parameters :Unconstrained Formal

Test Execution Bar Similar
Name Time Chart Groups

ss613 2.46 ********w****** I
s561.6 2.68 *,******,********

Individual Test Descriptions

ss613 proc record-reference (pat);
-- pass parameter to unconstrained formal. Checking enabled.

ss616 proc-record-reference (pat);
-- pass parameter to uncoi'st'-ained formal. Suppress checking.

Subprogram Calls-Parameters :Unconstrained Array Parameter

Test Execution Bar Similar
Name Time Chart Groups

ss6l4 2.32 *************** I
SS617 2.51 *****************

Individual Test Descriptions

ss614 proc vector (a20

CMU/SEi-92-TR-32 91

-- pass parameter to unconstrained formal. Checking enabled.

ss617 procvector (a20) ;
-- pass parameter to unconstrained formal. Suppress checking.

Subprogram Calls-Parameters : Constrainec Record Parameter

Test Execution Bar Similar
Name Time Chart Groups

S S 6 15 2. 2 2

s s 6 1 8 2 . 3 5 * *.*.*. ...** t* ' " '* "* '* ' '* ' ' ' ''*= ".

,ndividual Test Descriptions

ss615 proc tl rec (ra) ;
-- pass parameter to unconstrained formal. Checking enabled.

ss618 proc_ti rec (ra) ;
-- pass parameter to unconstrained formal. Suppress checking.

AES Test Results:

Configuration 1, AES Version DIYAES 2.0. Group I, Test TI10.

Note that most of the inlining tests were removed by optimization (see above). These observations
are marked with the phrase twlnllnlng results Invalid for the following table.

Note that the tests of inlined procedures are invalid, with exception of results for inlined integer param-

eters. The remaining tests of inlined procedure calls record execution times of zero seconds for the in-
lined routines, which invalidates the comparison to the non-inlined routines. Analysis of the test source
code shows that the calling times are measured for paired procedures. The inlined version of the pairs
lacks anti-optimization code present in the non-inlined version to access the procedure's argument. Al-
though this anti-optimization code is protected from actual execution during testing, omitting this code
allows the compiler to remove all the test code.

I. Group I - Runtime Efficiency Tests

1.25. TI10

This test examines the runtime efficiency of subprogram
calls, in particular, the passing of scalar and
non-scalar parameters using the 'in", 'in out", "out' and
ýreturn" modes. The test also determines whether the
parameters are passed by copy or by refeoence. The
overheads of subprogram entry and exit are included in
the measured costs. The test is performed for INLINEd and
non-INLINEd subprograms.

Test T005 indicates that inlining is performed for some
simple procedures but not for some procedures which are
fairly difficult to inline.

92 CMU/SEI-92-TR-32

Integer parameters:

+---------------------------------+----------------------------------

I Mode Passing I Cpu I Passing i Cpu
i I Mechanism I Time I Mechanism Time

I I I (INLINEd) 1 (INLINEd)
+--------------------4------------ -4.---------------------------------4

I in 1 COPY *7.82us I COPY i 246ns
I in out I COPY I 5.90us I COPY I 51Ons

I out I COPY I 5.57us I COPY I 253ns
Sreturn I - I 6.04us I I -

+---+---------------- +......-------------+-------- -----------------

Unconstrained array parameters (array of 256 integers):

g'lnllnlng results Invalid for the following table
+---------------------- -+-------------+---------------------------------

I Mode I Passing I Cpu I Passing I Cpu
I Mechanism I Time I Mechanism I Time I
I I I { (INLINEd) I (INLINEd) i

+----------+-----------------------•---+----------------- -- +

I in I REF 1 7.69us 1 REF O 0s I
I in out I REF I 7.69us I REF I Os I
I out I REP I 8.61us I REF i Os

return I - 229us I - I - I
+-----------+---------------+-------------+----------------+----

Constrained array parameters (array of 256 integers):

lwlnllnlng results Invalid for the following table
+-----------+---------------------+-- -------------------------------------

I Mode I Passing I Cpu I Passing I CoU I
I I Mechanism I Time I Mechanism I Time I

I I I (INLINEd) I (INLINEd) I
+---------------------+-------------+----------------+----------------+

I in I REF I 7.23us 1 REF O 0s I
I in ou- I REF I 6.99us I REF I 0s O
I OUt I REF I 6.79us I REF I Os I
I return I - i 229us I - i I
---------------------- +-------------+---------------+----------------+

Simple record parameters (record of 256 components):

BVInllnlng results Invalid for the following table
+-----------+---------------+-------------4----------------4----4

I Mode I Passing I Cpu I Passing I Cpu I
I I Mechanism I Time I Mechanism I Time I

II I I (INLINEd) I (INLINEd) 1
-+-------------+-------------+----------------+----------------4

I in I REF I 7.37us I REF t Os I
I in out I REF I 6.86us I REF O as I

out I REF I 6.79us I REF I Os s
return I - I 233us I - I -

+---------------------+-------------+----------------+----------------+

Discriminated record parameters (record of 256

components)*

CMU/SEI-92-TR-32 93

1Wlnlining results Invalid for the following table
--------------------------------+ ---- +------

I Mode I Passi~n I Cpu I Passing I Cpu
I Mechanism I Time I Mechanism I Time
I I I (INLINEd) I (INLINEd)I
+--------------------+----4---+ -----------

I in I REF 1 6.86us REF 0S s
I in out I REF I 6.84us REF C Os
I out I REF I 6.84us REF 0S s
I return I - I 234us I - -
+---....----............---------

PIWG Test Resuls:

Configuration 1, PIWG 12/12/87 Release, Tests P000001-P000007.

vads ada/optimize-4/errors=(listing,output) 'File Name'

Test Name: P000001 Class Name: Procedure
LPU Timte: 2.3 microseconds
Wall Time: 2.4 microseconds. Iteration Count: 2048
Test Description:
Procedure call and return time (may be zero if automatic inlining
procedure is local
no parameters

Test Name: P000002 Class Name: Procedure
CPU Time: 2.4 microseconds
Wall Time: 2.4 microseconds. Iteration Count: 2048
Test Description:
Procedure call and return time
Procedure is local, no parameters
when procedure is not inlinable

Test Name: P000003 Class Name: Procedure
CPU Time: 1.9 microseconds
Wall Time: 1.9 microseconds. Iteration Count: 2048
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
Compare to P000002

Test Name: P000004 Class Name: Procedure
CPU Time: 0.5 microseconds
Wall Time: 0.5 microseconds. Iteration Count: 2048
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
pragma INLINE used. Compare to P000001

Test Name: P000005 Class Name: Procedure
CPU Time: 2.3 microseconds
Wall Time: 2.3 microseconds. Iteration Count: 2048
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in INTEGER

94 CMU/SEI-92-TR-32

Test Name: PO00006 Class Name: Procedure
CPU Time: 2.9 microseconds
Wall Time: 2.9 microseconds. Iteration Count: 2048
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, out INTEGER

Test Name: P000007 Class Name: Procedure
CPU Time: 3.0 microseconds
Wall Time: 3.0 microseconds. Iteration Count: 2048
Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in out INTEGER

Observation 3: Tests in this observation examine the effects of the number and ordering of arguments.
As the number of arguments increases, the time to access a procedure increases. The ordering of
arguments in a procedure call does not appear to have an effect on performance.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Language Feature Overhead":

"* "Subprogram Calls-Reference to 1st to 9th Integer Parameter," page 95

"* "Subprogram Calls-Reference to 1st to 9th Float Parameter," page 96

"* "Procedure with 3 Default Parameters.' page 96

0 "Subprogram Calls: With 0..3 Parameters," page 97

Language Feature Overhead

Subprogram Calls-Reference to Ist to 9th Integer Parameter

Test Execution Bar Similar
Name Time Chart Groups

SS566 0.77 **********************************

ss567 0.77 *********************************
ss568 0.77 **********************************
ss571 0.77 ********************************

ss574 0.77 *********************************
ss569 0.78 ******************************** I
ss570 0.78 *********************************
ss572 0.78 ********************************

ss573 0.78 **********************.*********** I

Individual Test Descriptions

-- does system pass first few parameters in registers?
ss......i............--referene.to.fi.t.formalinteger.aram

ss566 ii := il ; -- reference to first formal integer parameter

ss567 Ei :- 12 ; -- reference to second formal integer parameter

CMU/SEI-92-TR-32 95

$3568 1i :- i0 ; -- reference to third formal integer parameter

----6 ---i i -- i 4 --; - - -- r e f e r e ce-t o-o u r t h f r m a l i t e g e r p r a m e t e

ss570 ii :-i45 -- reference to foufth formal integer parameter

ss571 Li iS reference to sixth formal integer parameter-

ss572 ii i7 5 -- reference to feveth formal integer parameter

--------i --------- --- referece- to- igh-h-fr-al--te-er-p-amete

33571 ii : i6 -- reference to ninth formal integer parameter

Subprgra Calls-R; --eference to ssetv9h eloth fomlPneearameter

ss575 i .7 := A -- eferece t eigth fomal ntege parmete

ss574 i: 9; - eeec 0.7 ninth formal integer**t*parameter

Tnesiua Testtio Descriptions

-Nade syste pashfrst feGprmeesunreites

ss575 0.f78 -rfeec ofrs omlfoa aaee

ss577 x 0.7-reeec8o eodfomlfot aaee

3s578 xx 0.-reeec o orhfomlfot8aaee

ss579 0.78 -rfeec offt omlfoa aaee

ss580 x 0.78; -- rfrne osxhfomlfot aaee

ss582 x 0.78 -- rfrneteihhfra fla prmtr

ss583 0x.798 -- rfrne onnhfomlfot aaee

Procdur Wih0.eautPaaetr

Testia Exectio BarcrSimilar

Nades syteme Chafrst Groupsees nreites

----1 - - -- - 5.52 --- -- - - -- --- -- -- - --- -- - - -- --

ss126 11:-f.2 ; -rfrnet is fra la aaee

96 CMU/SE I----- -- -- -- -- -- --- -TR--- -32-

ssl25 11250 ***w*.w*wa**ans

Individu, 1 Test Descriptions
-- -- -- . -.. .

PROCEDURE drymartini
base spirit gin
how style on therocks
with a trimming olive) IS

BEGIN
martini (base, how, with a

END drymartini ;

ss124 dry martini -- Call local procedure uith 3 defauit parameters,
-- omitting all parameters on call.

ss125 drymartini (gin , ontherocks , olive) ;
-- Call local procedure with 3 default parameters,
-- specify all parameters on call.

ss126 drymartini (how => straight up) ;
-- Call local procedure with 3 default parameters,
-- specify second parameter (by name) on call.

sa127 martini (gin , on the rocks , olive) ;
-- Lower level procedure that ss124-ss126 call on.

-- - -. .

Subprogram Calls: With 0..3 Parameters

Test Execution Bar Similar
Name Time Chart Groups

ss36 2.30 ******

ss37 5.97 ****************
ss38 9.39 ***************.***** I
ss39 13.00 *********************************

--

Individual Test Descriptions

ss36 procO ;
-- simple procedure with no parameters; call to library scope
-- procedure : body is null.

ss37 procl (xx) ;
-- simple procedure with one IN OUT floating point parameter,
-- declared in external library unit : body is null.

ss38 proc2 (xx, yy)
-- simple procedure with two IN OUT floating point parameters,
-- declared in external library unit : body is null.

ss39 proc3 (xx , yy , zz) ;

-- simple procedure with three IN OUT floating point parameters,
-- declared in external library unit : body is null.

---- --

PIWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Test P000005, P000010-P000013.

CMU/SEI-92-TR-32 97

vads ada/optimize-4/errors-(listing,output) 'File_Nane'

Test Name: P000005 Class Name: Procedure
CPU Time: 2.3 microseconds
Wall Time: 2.3 microseconds. Iteration Count: 2048

Test Description:
Procedure call and return time measurement
The procedure is in a separately compiled package
One parameter, in INTEGER

Test Name: P000010 Class Name: Procedure
CPU Time: 8.6 microseconds
Wall Time: 8.6 microseconds. Iteration Count: 1024

Test DescLiption:
Procedure call and return time measurement
Compare to P000005
10 parameters, in INTEGER

Test Name: P000011 Class Name: Procedure
CPU Time: 18.0 microseconds
Wall Time: 18.0 microseconds. Iteration Count: 512
Test Description:
Procedure call and return time measurement
Compare to P000005, P000010
20 parameters, in INTEGER

Test Name: P000012 Class hame: Procedure
CPU Time: 11.3 microseconds
Wall Time: 11.3 microseconds. Iteration Co-nt: 512
Test Description:
Procedure call and return time measurement
Compare with P000010 (discrete vs composite parameters
10 paramaters, in MYRECORD a three component record

Test Name: P000013 Class Name: Procedure
CPU Time: 22.1 microseconds
Wall Time: 22.1 micrcoseconds. Iteration Count: 512
Test Description:
Procedure call and return time measurement
twenty composite 'in' parameters
the composite type is a three component record

References

none

98 CMU/SEI-92-TR-32

2.12 Optimization Options

Question: What are the effects of different optimization ievels?

Summary: The VADS compiler provides 10 optimization levels, from 0 to 9. The default value is 4. For
the tested cases, higher levels of optimization provide only limited improvements in execution
performance, at the cost of increased compilation time. Optimization may be deactivated selectively for
parts of programs.

Discussion: The Ada language standard provides program control of compiler optimizations by prag-
ma OPTIMIZE. The standard options are OPTIMIZE(SPACE) and OPTIMIZE(TIME). A compiler may
honor the pragma or not, and can provide additional optimization options.

!n deciding how to set optimization levels, the programmer should consider the following questions:

* How do optimization levels affect execution speed?

0 How do optimization levels change program size?

0 Does optimization cause any undesirable side effects, such as moving variables that
require a fixed location in memory?

• What is the ccst (or overhead) associated with various optimization levels?

The tested compiler does not honor pragma OPTIMIZE. The compiler provides 10 levels of optimiza-
tion, applied by a compiler command line switch, which applies increasing numbers of optimizations and
performs additional passes through the code (Observation 1 on page 100).

Since the optimization of individual code segments depends heavily on that code's exact syntax, it is
impossible to make a general statement about the increase in of performance for Ada programs. How-
ever, Observation 2 on page 102 shows the effects of increasing execution time on the PIWG B tests,
a set of application programs. This illustrates that the improvement in execution speed trails off above
optimization level 3.

No information on program size is provided as part of this report.

While both the AES and ACEC provide extensive tests to demonstrate which optimizations are per-
formed, there is no correlation between the use of specific optimizations and potentially harmful side
effects due to optimization. As can be seen in Figure 2-4 on page 103, the PIWG Tests B000001A and
B failed when the optimization level was set to 4 or higher. The reason for this failure is not known. In
another example, programs that control peripherals through successive writes of constant values to
specified memory locations may give the appearance code, which an optimizer can remove from the
program. Observation 3 or; page 104 provides a listing of tests fir specific optimizations. The Verdix
documentation indicates that optimization can be deactivated selectively for packages, subprograms,
and objects (Observation 1 on page 100).

No information on compiler timing or size for the compiler was collected for this report.

CMU/SEI-92-TR-32 99

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-waht-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric-

Observation 1: Verdix documentation describes available optimizations. Note that pragma OPTIMIZE
is not effective, but the level of optimization can be set by a command line option, and that optimization
can be selectively disabled for individual subprograms, packages, and named objects.

Several portions of the Verdix documentation are relevant:

VADS Programmer's Guide, PG F-4:

pragma OPTIMIZE
is recognized by the implementation, but has no effect in the cur-
rent release...

pragma OPTIMIZE_CODE(OFFION)
specifies whether the code should be optimized (ON) by the com-
piler or not (OFF). It can be used in any subprogram. When OFF
is specified, the compiler generates unoptimized code. The default
is OFF.

Optimization can be selectively suppressed using this pragma at
the subprogram level. Inline subprograms are optimized even if
they have pragma OPTIMZECODE(OFF) unless the caller also
has pragma OPTIMIZECODE(OFF).

VADS Programmer's Guide, PG F-7:

pragma VOLATILE(objecl
guarantees that loads and stores to the named object will be per-
formed as expected after optimization.

100 CMU/SEI-92-TR-32

VADS User's Guide, UG 4-4:

The Verdix optimizer perfbrms most classical code optimizations
and several that are specific to Ada:

"* Code straightening
"* Constant folding, copy propagation and strength reduction
"* Redundant branch and range check elimination
"* Common subexpression elimination including elimination of

common expressions from the alternatives of a branch or case
statement

"* Hoistings of loop invariant computations and range checks

"* Strength reduction of index computations within a loop

"* Loop induction variables for array indexing within a loop
"* Range propagation for elimination of constraint checking
"* Limitation of assignment to unused local variables

"* Address simplification

In addition, the following VADS compiler features relate to the
runtime performance of the generated code:

"* Local scalar and access variables automatically allocated in
registers

"* Loop variables allocated in registers
"* Parameters passed in registers

"* Graph coloring register allocation scheme
"* Code generation for math coprocessors
"* Target specific peephole optimization

pragma OPTIMIZECODE(ONIOFF) can suppress or re-enable optimiza-
tion for a specific subprogram or package.

pragma VOLATILE(objecLtname) guarantees that references to the
named object will not be optimized away.

VADS User Guide, UG 8-22:

IOPTIMIZE[=number]lnvoke the code optimizer (OPTIM3). An optional
digit provides the level of optimization. /OPTIMIZE=4 is the de-
fault.

/OPTIMIZE no digit, full optimization

/OPTIMIZE=0 prevents optimization

/OPTIMIZE=I no hoisting

/OPTIMIZE=2 no hoisting but more passes

/OPTIMIZE=3 no hoisting but even more passes

/OPTIMIZE=4 hoisting from loops

CMU/SEI-92-TR-32 101

/OPTIMIZE=5 hoisting from loops but more passes

/OPTIMIZE=6 hoisting from loops with maximum passes

/OPTIMIZE=7 hoisting from loops and branches

/OPTIMIZE=8 hoisting from loops and branches, more passes

/OPTIMIZE=9 hoisting from loops and branches, maximum
passes

Hoisting from branches (and cases alternatives) can be slow and does
not always provide significant performance gains so it can be sup-
pressed.

Observation 2: The PIWG "B" tests were run for each optimization level provided by the Verdix
compiler. The results are graphed below.

PlWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Tests 6000001 -B000004, for optimization level 0-9 (see also

Observation 1).

Table 2: Execution Times (in Seconds) for PIWG B Tests at Various

Optimization Levels

opt or• opt Opt OpL Opl OpL. opt Or• om om
PIWG Test 0 a 1 2 3 4 5 6 7 8 9 9

Boo0001A 46.9 30.0 28.7 28.7 29.2

"B000001B 36.9 23.2 22.3 22.2 22.9

B000002A 42.3 26.7 24.7 24.7 25.2 25.0 25.0 25.3 25.0 25.2 25.0

B000002B 35.5 21.0 19.5 19.5 19.9 19.7 19.7 19.9 19.7 19.9 19.7

B000003A 48.1 31.7 29.6 29.5 29.9 29.9 29.9 29.9 29.9 29.9 29.9

B000003B 41.1 25.7 24.1 24.0 24.4 24.5 24.5 24.5 24.5 24.4 24.4

B000004A 46.3 28.2 25.9 25.9 26.6 26.4 26.4 26.6 26.4 26.6 26.4

B000004B 35.7 20.4 19.0 19.0 19.6 119.4 19.4 19.6 19.4 19.6 19.4

a Opt.=optimization level selected for the Verdix compiler.
b Ch=run-time checking enabled.
c No=no run-time checking.

102 CMU/SEI-92-TR-32

1 .00
0 0 -9 0

"0 0.80

~0C: 4 0.60-

0-50-

0•o30-

S 020-
S010-

X B 0 4B

0 .00" B 04 A
B03B

0 B 0 B2 B
, 0 B02A

) . 0 0 0 B01Bo C

~.C 0 4

" o •0 a 0 Test Name
0 0

ooQo • *4o 0
o ~ ~... =U *C 0

o

Optimization Levelo
Figure 2-4: Graph of PIWG B Test Results

Notes:

•The Y axis displays the optimization levels provided by the Verdix compiler, from 0
(no optimization) to 9 (full optimization). From left to right, the first 10 observations
were made with run-time checking on, while the final observation has checking
turned off.

• The X axis shows the PIWG B test name (abbreviated). Each test was attempted 11
times, for various optimization levels. Note the BO01A and B01 B tests tailed to" some
optimization levels.

* The Z axis shows the execution time, normalized by test. For each test, the execution
time for optimization level 0 was taken as the value 1.0, with the other results in the
series shown in proportion. This displays all test series to the same scale, showing
how optimization affected execution times for the PIWG B tests. If actual execution
times are needed, consult the table above.

* PIWG Test B000001 failed when the optimization level was set to 4 or above.

CMU/SEIl-92-TR-32 103

Observation 3: Numerous tests for individual optimizations are made by both the ACEC and AES test
suites.

AES Test Results:

Observation 1, DIY_AES Version 2.0, Group 0, Tests TO01-T004, TO08, TO10-TO14, T016, T018-
T020.

Note that tests appearing in other portions of this report are not reproduced here. See, for example, ar-
ray efficiency, check suppression and generic procedures.

0. Group 0 - Optimization Tests

0.1. TO01

This test checks optimizations involving value
propagation.

Value propagation is the replacement, at compile time, of
a reference to a variable by its known value. The code
size of sections of code which permitted value
propagation was compared with an equivalent section where
propagation could not be performed. The following results
were obtained.

Simple propagation optimization is performed for
integers.

Propagation of values through if statements does occur
for integers.

Chains of propagation of values (i.e. remembering the
contents of variables as a result of assigning other
variables with known values to them) does occur for
integers.

Simple propagation optimization is performed for floats.

Propagation of values through if statements does occur
for floats.

Chains of propagation of values (i.e. remembering the
contents of variables as a result of assigning other
variables with known values to them) does occur for
floats.

0.2. T002

This test checks for common subexpression elimination, in
particular, examining whether common subexpressions are
only evaluated once.

Two common subexpressions involving integers are not
recognised as being common.

Three common subexpressions involving integers are not
recognised as being common.

Two common subexpressions involving one-dimensional array
addressing for integers are recognised as being common
and only evaluated once.

104 CMU/SE I-92-TR-32

Two common subexpressions involving two-dimensional array
addressing for integers are recognised as being common
and only evaluated once.

Two common subexpressions involving floats are not
recognised as being common.

Three common subexpressions involving floats are
recognised as being common and only evaluated once.

Two common subexpressions involving one-dimensional array
addressing for floats are recognised as being common and
only performed once.

Three common subexpressions involving two-dimensional
array addressing for floats are recognised as being
common and only performed once.

0.3. T003

This test checks loop optimizations.

Some loop invariant array addressing expressions are
hoisted out of the body of a loop.

Some loop invariant statements are hoisted out of the
body of a loop.

Simple loops iterating twice are not unrolled.

Simple loops iterating three times are not unrolled.

Constraint checks are not removed from the body of a
loop.

0.4. T004

This test examines the use of registers for variables.

The test was performed by comparing code sizes of groups
of statements which allowed scope for some (but not all)
variables to be allocated to registers. If registers were
used, some of the statements would yield shorter code
sequences. It was found that approximately 4 registers
were used to hold variables.

0.8. TO08

This test determines whether or not only those
subprograms which are referenced are loaded.

The test measures the size of code loaded, to see if
unreferenced subprograms are in fact loaded. Pragma
OPTIMIZE (SPACE) was set and it was noted that
unreferenced subprograms are not loaded.

0.10. TO1N

This test checks a variety of subexpression evaluation
optimizations, in particular constant folding.

CMU/SEI-92-TR-32 105

Constant folding (performing compile-time arithmetic on
constants) and special-case expression evaluation (e.g.
multiplying by zero or one) was tested under a variety of
conditions. Code sizes obtained were compared with
cnntrol versions which inhibited the optimizations.
Pragma OPTIMIZE (SPACE) was used.

Simple constant folding of adjacent constants is
performed for integers.

Constant folding after re-arrangement (i.e. the compiler
rearranges the expression to bring two constants
together) is not performed for integers.

Complex constant folding (e.g. evaluating bracketed
compile-time known expressions) is not performed for
integers.

Simple constant folding, involving propagation of
remembered values from elsewhere in the code, is not
performed for integers.

Complex constant folding, involving propagation of
remembered values from elsewhere in the code, is
performed for integers.

Special-case expression evaluation is performed for
integers.

Simple constant folding of adjacent constants is
performed for floats.

Constant folding after re-arrangement (i.e. the compiler
rearranges the expression to bring two constants
together) is not performed for floats.

Complex constant folding (e.g. evaluating bracketed
compile-time known expressions) is not performed for
floats.

Simple constant folding, involving propagation of
remembered values from elsewhere in the code, is not
performed for floats.

Complex constant folding, involving propagation of
remembered values from elsewhere in the code, is not
performed for floats.

Special-case expression evaluation is performed for
floats.

0.11. TOll

This test performs checks on the suppression of redundant
runtime checks.

Timing tests were run to compare code where runtlme
checks are required with similar code where the checks
are redundant. Pragma OPTIMIZE (TIME) was set.

The index check when indexing arrays is automatically
eliminated when not required when the index subtype is a
subtype of the array range.

106 CMU/SEI-92-TR-32

Constraint checks on indexing arrays are not eliminated
when the index value is known by propagation of the value
of the index.

The range check when assigning objects of different
subtypes is automatically eliminated when not required
because one object is a subtype of the object being
assigned to.

0.12. T012

This test examines the effectiveness of register
allocation and involves expressions requiring storage of
intermediate results.

Test failed. No TEST.TST

0.13. TO13

This test checks whether or not only referenced subunits
are loaded. The test measures the size of code loaded to
see if unreferenced subunits are in fact loaded. Pragma
OPTIMIZE (SPACE) was set.

Unreferenced subunits are not loaded,

0.14. T014

This test determines whether the compiler can recognise
and remove unreachable and redundant code.

The compiler did not generate unreachable code in a
function where extra statements followed the 'return'
statement.

The compiler did generate redundant code in the case of
an 'if' statement where the result of the condition was
known at compile-time.

0.16. TO16

This test determines whether the compiler can recognise
code which will definitely cause a predefined exception
and replace it with exception raising code.

The compiler did not recognise and replace with exception
raising code, statements which would definitely cause a
NUMERICERROR.

The compiler did recognise and replace with exception
raising code, statements which would definitely cause a
CONSTRAINTERROR.

0.18. TO18

The aim of this test is to determine if the compiler can
recognise an accept statement with a null body and avoid
context switching in this case, thus making a significant
time saving.

CMU/SEI-92-TR-32 107

Test failed. No TEST.TST

0.19. T019

The aim of this test is to help determine if there are

any special optimizations when the compiler recognises a

passive task, ie. turning the task into a monitor

package. In this case the passive task simply protects a

shared variable.

Test failed. Malfunction in Test Harness

Exception in Unattended mode

0.20. T020

The aim of this test is to help determine if there are

any special optimizations when the compiler recognises a

passive task, ie. turning the task into a monitor

package. In this case the passive task handles a buffer

similar to a MASCOT channel.

Test failed. Malfunction in Test Harness
Exception in Unattended mode

ACEC Test Results:

Observation 1, ACEC Release 2.0, SSA Report "Optimizations':

* "Algebraic Simplification: Array of Integer [Tests ss432 and ss4331, ige 112

"* "Algebraic Simplification : Array of Integer [Tests ss434 and ss435J, page 113

"* "Algebraic Simplification Array of Integer- [Tests ss436 and ss437], page 113
"* "Algebraic Simplification Boolean" [Tests ss83 and ss82], page 113

"• "Algebraic Simplification : Boolean" [Tests ss85 and ss86], page 113

"* "Algebraic Simplification: Boolean* [Tests ss319 and ss320], page 114

"* "Algebraic Simplification : Boolean" [Tests ss321 and ss322], page 114

"* "Algebraic Simplification : Integer* [Tests ss5l and ssl 11, page 114

"• "Algebraic Simplification Integer [Tests ss44 and ss0], page 114

"• "Algebraic Simplification Integer- [Tests ss52 and ssl 1], page 114

0 "Algebraic Simplification Integer [Tests ss47 and ssl 1], page 115

"* "Algebraic Simplification Integer" [Tests ss560 and ss561], page 115

"* "Algebraic Simplification : Integer" [Tests ss48 and ssl 1, page 115

"* "Algebraic Simplification : Integer [Tests ss49 and ssl 1], page 115

"* "Algebraic Simplification : Integer [Tests ss50 and ss7], page 115

"* "Algebraic Simplification : Integer [Tests ss9 and ss43], page 116

"* "Algebraic Simplification : Floating Point" [Tests ss64 and ss3], page 116

"* "Algebraic Simplification : Floating Point" [Tests ss61 and ss3], page 116

108 CMU/SEI-92-TR-32

"* "Algebraic Simplification : Floating Point" RTests ss62 and ss3J, page 116

"* "Algebraic Simplification: Floating Point" [Tests ss63 and ss3], page 116

"* "Algebraic Simplification Floating Point" (Tests ss65 and ssl], page 117

"* "Algebraic Simplification Boolean NOT, NOT NOT," page 117

"* "Range Constraint Check," page 117

e "Bounds Checking" [suppression/non-suppression!, page 117

"* "Dubious Constant Propagation" RTests ss314 and ss315], page 118

"* "Dubious Constant Propagation" RTests ss316 and ss3171, page 118

"* "Dubious Constant Propagation" [Tests ss318 and ss315], page 118

"* "Constant Propagation" [Tests ss366 and ss7], page 119

"* "Constant Propagation" [Tests ss540 and ss7j, page 119

"* "Constant Propagation" [Tests ss556 and ss7], page 119

"* "Common Subexpression Elimination" [Tests ss210 and ss211], page 120

"* "Common Subexpression Elimination" [Tests ss2l 0 and ss643], page 120

"* "Common Subexpression Elimination" [Tests ss211 and ss530], page 120

"* "Common Subexpression Elimination" [Tests ss211 and ss533], page 120

* "Common Subexpression Elimination" [Tests ss644 and ss841, page 121

"* "Boolean Variable Elimination," page 121

"* "Dead Code Elimination" [Tests ss56 and ssl 1], page 121

* "Dead Code Elimination" [Tests ss68 and ss3j, page 121

"* "Dead Code Elimination" [Tests ss7l and ss0l, page 122

"* "Dead Code Elimination" [Tests ss225 and ss7j, page 122

"* "Dead Code Elimination" [Tests ss226 and ssO], page 122

"* "Dead Code Elimination" [Tests ss649 and ssl], page 122

"* "Dead Code Elimination" [Tests ss651 and ssl 11, page 123

"* "Dead Code Elimination" [Tests ss93 and ss0], page 123

"* "Dead Code Elimination" [Tests ss195 and ss0], page 123

"* "Dead Code Elimination" RTests ss261 and ssO], page 123

"* "Dead Code Elimination" [Tests ss26 and ss0], page 124

"* "Dead Code Elimination" [Tests ss376 and ss361, page 124

"* "Dead Code Elimination" [Tests ss377 and ss361, page 124

"* "Dead Code Elimination" [Tests ss543 and ss0], page 124

"* "Dead Code Elimination" [Tests ss544 and ssO], page 125

"* "Dead Code Elimination" [Tests ss751 and ssO0, page 125

* "Dead Variable Elimination," page 125

• "Order Of Evaluation Tests" [Tests ss413 and ss414], page 126

• "Order Of Evaluation Tests" [Tests 3415 and ss416], page 126

CMU/SEI-92-TR-32 109

e "Data Flow" [Tests ss427 and ssl 1], page 127

e "Data Flow" [Tests ss504 and ss0], page 127

• "Data Flow" [Tests ss505 and ss0l, page 127

* "Data Flow" [Tests ss558 and ss559], page 127

9 "Data Flow" [Tests ss756 and ss7], page 128

e "Data Flow" [Tests ss753, ss754 and ss755], page 128

e "Folding" [Tests ss40 and ssl I], page 129

0 "Folding" [Tests ss4l and ss7], page 129

0 "Folding" [Tests ss42 and ss7], page 129

0 "Folding" [Tests ss216 and ssl], page 129

0 "Folding" [Tests ss217 and ss7], page 130

* "Folding" [Tests ss219 and ssl], page 130

* "Folding" [Tests ss303 and ss302], page 130

• "Folding" [Tests ss304 and ss307], page 130

* "Folding" [Tests ss305 and ss307], page 131

* "Folding" [Tests ss532 and ss5291, page 131

& "Folding" [Tests ss532 and ssl 1, page 131

* "Folding" [Tests ss2 and ssl]. page 131

"Folding" [Tests ss8 and ss7], page 132

0 "Folding" [Tests ss54 and ssS3], page 132

0 "Folding" [Tests ss55 and ssl I], page 132

* "Folding" [Tests ss6O and sslJ, page 132

* "Folding" [Tests ssl89 and ss190], page 133

0 "Fo:dable Expressions" [Tests ss587 and ss594], page 133

0 "Foldable Expressions" [Tests ss588 and ss594], page 133

* "Foldable Expressions" [Tests ss589 and ss594], page 133

0 "Foldable Expressions" [Tests ss590 and ss594], page 134

* "Foldable Expressions" [Tests ss591 and ss594], page 134

* "Foldable Expressions" [Tests ss592 and ss594], page 134

e "Foldable Expressions" [Tests ss593 and ss594], page 134

* "Foldable Expressions" [Tests ss595 and ss594], page 135

* "Foldable Boolean Expressions" [Tests ss227 and ss84], page 135

* "Foldable Boolean Expressions" [Tests ss230 and ss841, page 135

e "Foldable Boolean Expressions" [Tests ss231 and ss841, page 135

0 "Foldable Boolean Expressions" [Tests ss232 and ss841, page 136

0 "Foldable Boolean Expressions" [Tests ss239 and ss0], page 136

* "Folding in Inline Function" [ss142, ss563, ss564, and ss565], page 136

110 CMU/SEI-92-TR-32

* "Folding in Inline Function" [Tests ss563 and ss7l, page 137

e "Machine Idioms" [Tests ss29 and ss3], page 137

* "Machine Idioms" [Tests ss30 and ssl I], page 137

* "Machine Idioms" [Tests ss40 and ssl 1], page 137

0 "Machine Idioms" [Tests ss45 and ss7j, page 138

* "Machine Idioms" [Tests ss52 and ss9j, page 138

e "Machine Idioms" [Tests ss59 and ss3], page 138

9 "Machine Idioms" [Tests ssl 15 and ssl 14], page 138

* "Machine Idioms" [Tests ss128 and ssl 29], page 138

0 "Machine Idioms" [Tests ss196 and ss201, page 139

0 "Machine Idioms" [Tests ss198 and ss201], page 139

0 "Machine Idioms" [Tests ss201 and ss2021, page 139

* "Machine Idioms" [Tests ss197 and ss203], page 139

* "Machine Idioms" [Tests ss199 and ss200], page 140

* "Machine Idioms" [Tests ss204 and ss200], page 140

* "Machine Idioms" [Tests ss207 and ss208J, page 140

* "Machine Idioms" [Tests ss323 and ss3241, page 141

0 "Machine Idioms" [Tests ss215 and ssl 1], page 141

* "Machine Idioms" [Tests ss503 and ss0], page 141

* "Machine Idioms" [Tests ss205 and ss2061, page 141

* "Jump Tracing" [Tests ss250 and ss0j, page 142

0 "Jump Tracing" [Tests ss619 and ss0], page 142

• "Jump Tracing" [Tests ss620 and ss0, page 142

0 "Jump Tracing" [Tests ss26 and ss0], page 142

e "Jump Tracing" [Tests ss261 and ssO], page 143

a "Loop Fusion," page 143

* "Loop Interchange", page 143

* "Loop Unrolling, Test Elimination" [Tests ssS41 and ss542x], page 144

* "Loop Unrolling, Test Elimination" [Tests ss542 and ss542x], page 144

* "Loop Unrolling" [Tests ssl05 and ss642], page 145

* "Loop Unrolling" [ss3, ssl7, ss57, ss238, and ss2401, page 145

0 "Loop Flattening: 2 Dimensional Arrays Of Real," page 145

0 "Loop Invariant Motion" [Tests ss212 and ss3], page 146

* "Loop Invariant Motion" [Tests ss429 and ss430], page 146

* "Loop Invariant Motion" [Tests ss536 and ss535), page 146

0 "Loop Invariant Motion" [Tests ss752 and ssl 11, page 147

* "FOR LOOP with NULL Body," page 147

CMU/SEI-92-TR-32 111

"* "Test Merging" [Tests ss178 and ss1791, page 147

* "Test Merging" [Tests ss440 and ss441], page 148

"* "Respect for Parentheses Test," page 148

"* "Superfluous Parentheses" [Tests ss389 and ss3], page 149

"* "Superfluous Parentheses" [Tests ss391 and ss390], page 149

"* "Superfluous Parentheses" [Tests ss392 and ss390), page 149

"* "Superfluous Parentheses" [Tests ss393 and ssl 11. page 149

"* "Superfluous Parentheses" [Tests ss395 and s,.'.,4J, page 149

"* "Superfluous Parentheses" [Tests ss396 and ss394], page 150

"* "Order of Evaluation & Register Allocation Test for Parameters"
[Tests ss546 and ss5471, page 150

"* "Order of Evaluation & Register Allocation Test for Parameters"
[Tests ss548 and ss549], page 150

"* "Order of Evaluation & Register Allocation Test for Parameters"
[Tests ss5sO and ss551], page 151

"* "Register Allocation with Call on External Procedure," page 151

"* "Register Allocation" [Tests ss262 and ss2631, page 152

"* "Register Allocation" [Tests ss264 and ss2661, page 152

"* "Register Allocation" [Tests ss265 and ss2661, page 152

"* "Relational Expression OR vs OR ELSE," page 152

"* "IF Statement - Integer, Float - AND vs AND THEN," page 153

"* "IF Statement - Integer Relations, Simplifications" [Tests ss228 and ss229], page
153

"* "IF Statement - Integer Relations, Simplifications" [Tests ss231 and ss84J, page 154

"* "Strength Reduction" [Tests ss213 and ss4221, page 154

"* "Strength Reduction" [Tests ss423 and ss424], page 154

"* "Strength Reduction" [Tests ss425 and ss426j, page 155

"* "Strength Reduction" 1Tests ss1S and ss5], page 155

"* "Strength Reduction" [Tests ss188 and ss202), page 155

"* "Strength Reduction" [Tests ss279 and ss273], page 155

"* "Test Swapping," page 156

Opt imizat ions

Algebraic Simplification : Array of Integer

Description Optimized?

Time : ss432 (20.9) vs ss433 (18.2) nostaristics

112 CMU/SEI-92-TR-32

c el (2);
d el (3);
e el(4);
f el(5);

ss432 => a :=b * (e + f) - c *(e f)+d IC e + f))

ss433 => a := b - c + d) *(e + f); +

Algebraic Simplification :Array of Integer

Description Optirrzed?

Time :ss434 (13.8) vs ss435 (22.4) yes

ss434 -> a :=b + c + d * e; +

ss435 -> ti : b + c; t2 :-d * e; a ii t + t2; +

Algebraic Simplification :Array of Integer

Description Optimized?

---- ---

--

SS436 -> a :- b / c / d / --; +
--

35437 -> a :-b / (c * d * e); +

--

Algebraic Simplification :Boolean
-- -- ---

Description Optimized'?
--
Time :ss83 (1.8) vs ss82 C 1.4) nostatistics
---- ---

--

ss83 -> IF NOT (11 >- mm~) THEN ii :-1; END IF; -- True,
--

ss82 -> IF 11 < Mir. THEN ii :-1; END IF; -- True,
--- --

---- ---
Algebraic Simplification :Boolean
----- ---

Description Optimized?
----- ---
'Time :ss85 2.1) vs asS8 (1.7) r.,)Statistics
---- --- ----------------------

SsB5 -> IF' 11 < mm THEN ii :-1; ELSE die; END IF; -- True;

ss86 => IF 11 >- mm THEN die; ELSE ii :=0; END IF; -- False
--- --

CMU/SEI-92-TR-3213

Algebraic Simplification :Boolean

Description Opt imi zed?

Time :ss319 (1.8)vs ss320 (1.8 1 yes

ss319 -> IF mm > 11 OP 'alse THEN 1i :-'; END :.F;

ss320 -> IF mm > 11 OR ELSE False THEN ii :-1; END 1F;

Algebraic Simplification :Boolean

Description Opt~mized?

Time :ss321 (1.9) vs s3322 (0.8) nostatistics

33321 -> IF mm > 11 OR True THEN iij: 1; END IF;

ss322 -> IF mm > 11 OR ELSE True THEN ii :-1; END IF;,

Algebraic Simplification :Integer

Description Optimized?

Time :ss5l (0.8) vs assh (0.8) yes
---- --

sail -> ii :- 11;* 1

--

Algebraic Simplification :Integer
---- --

Description Optimized?
---- --
Time : 344 (0.0)vs sa0 (0.0) yes
---- --

--
ss44 -> ii :-ii + 0;

ssO -> NULL;
--

--

Algebraic Simplification :Integer
---- --

Description Opt imized?
---- ----------- ---
Time : ss2 (0.9)vs sail (0.8) nostatistics
---- --

--

ss52 ='> ii :-11 + 1;
--

assl => kk :-11;

114 CMUJSEI-92-TR-32

Algebraic Simplification tInteger

Description Opt imized?

Time :ss47 (0.8) vs ssll (0.8) yes

3s4
7

-> ii :-11 *1;

ssll -> kk :-11;

Algebra.ic Simplification :Integer

Description Optimized?

Time ;ss56O (0.8) vs sSS56 (0.8) yes

as560 -> 1i :- -1 * ii;

ss561 -ýý ii :--ii;

Algebraic Simplification :Integer

Description Optimized?

Time :ss48 (0.3) vs sail C 0.8) yes

s948 -> ii :- 11 / 1;

sail -> kk :-11;

Algebraic Simplification :Integer

Description Optimized?

Time :ss49 1 0.8) vs assh (0.8) yes

s949 -> ii :-11 * 0;

assl -> kk :-11;

Algebraic Simplification :Integer

Description Optimized?

Time :sasO (0.8) vs S37 (0.8) nostatistics

SS50 => ii :- 11 ** 0;

ss7 => kk :=1;

CMU/SEI-92-TR-32 115

Algebraic Simplification :Integer

Description Optimized?

Time :ss9 (1.1)vs ss43 (3.7) yes

ss9 -> kk :-11 + mmi;

ss43 -> ii :-0; procO; ii :- ii + 1;

Algebraic Simplification :Floating Point

Description Optimized?

Time :ss64 (0.8) vs ss3 (0.8)nostatistics

ssE4 -> xx :- yy + 0.0;

ss3 -> xx :- yy

Algebraic Simplification :Floating Point

Description Optimized?

Time :ss61 (0.8) vs ss3 (0.8) maybe

ss6l -> xx :- yy *1.0;

853 ->xx :- yy ;

Algebraic Simplification :Floating Point

Description Opt imized?

Time :ss62 (0.8) vs 3s3 (0.8) no

Alebai Sipiicto Flatn Point

--- --

---- --

---- --

ss63 -> xx :-yy * 0.0;

--

116 CMU/SEI-92-TR-32

Algebraic Simplification :Floating Point

Description Optimized?

Time :ss65 (0.8) vs 551 (0.8) nostatistics

ss65 => xx :- yy **0;

ssl -> xx ;- 1.0;

Algebraic Sinplification :Boolean NOT, NOT NOT

Test Execut ->n Bar Similar

Name Tilr.- Chart Groups

ss72 0.89 I
ss73 1.17

Individual Test Descriptions

-- bola prtrNOT.

ss73 bool :=NOT (NOT bool) ; -- could be noop
-- algebraic simplification; boolean NOT NOT.

Range Constraint Check

Test Execution Bar Similar
Name Time Chart Groups

ssl28 2.51 **************** I
3s255 2.51 ***t************

ss129 2.58 *****************

Individual Test Descriptions

TYPE color IS (white, red, yellow, green, blue, brown, black
hue :color :-yellow;

ssl28 IF hue <black THEN hue color'succ Chue);END IF
IF hue > white THEN hue color'pred h "ue END IF

-- uses 'SUCC and 'PRED on enumerated type, no checking

ss129 IF ei < 6 THEN ei ei + 1 END IF
IF ci > 0 THEN ei ei -1 ;END IF

-- Same computations as in ss128 on integers

ss255 IF hue < black THEN hue color'succ (hue);END IF
IF hue > white THEN hue color'pred (hue ;END IF

-- uses 'SUCC and 'PRED on enumerated type, enabling range checking

Bounds CheckinS; (suppression/non-suppression)

Test Execution Bar Similar
Name Time Chart Groups

CMU/SEI-92.TR-32 117

ss194 3.95 **W*******

ss175 5.97 *******W*W**W*~*

Individual Test Descriptions

TYPE a type IS ARRAY (1.-10) OF int,
a, b, c :a type :- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
minus one CONSTANT :- -1
d :ARRAY (minus one. .8) OF int :-C-1, 0, 1, 2, 3. 4, 5, 6, 7, 8

s3175 ii :-a (ei,) + b (ei) + c (ei)+ d (ei);

-- Reference to 4 arrays with overlapping static bounds

-- Can merge bounds checking.
--------------- ------------------ -----------------------------

TYPE a type IS ARRAY Cint' C 1) .int' (10))OF int

a, b, c :a -type :- 1. 2, 3, 4, 5, 6, 7, 8, 9, 10

minus one CONSTANT mnt :- -l
d :ARRAY Cminus one..-int' (8 OF int

(-1, 0, 1, 2, 3, 4, 5, 6, 7, 8

ss194 ii -a (ei) + b (ei) + c (ei) + d (ei) ;
-- Reference to 4 arrays. This version suppresses subscript checking.

Dubious Constant Propagation

Description Optimized?

Time : s314 (8.0) vs ss315 (1.5) nostatistics

ss314 -> xx :- 1.00000001 ; bool. :- xx - 1.0 > 0.0;

-- test for constant propagation -- precise floating point
-- literal (9 digits) which can be propagated into its
-- following statements and folded.
-- the optimization into ss315 is dubious

ss315 -> xx :- 1.0 ; bool :-true;
-- hand optimized (folded) version of ss314

Dubious Constant Propagation

Description Optimized?

Time :ss316 (8.8) vs 99317 (1.4) nostatistics

ss316 -> xx := 1.00000001 ; bool :- xx - 1.0 >0.0 ; xx :-yy

-- this pair may yield different results than ss314, ss3lS
-- since ss316 makes initial assignment to 'xx' dead and
-- so may facilitate the 'optimization' into ss317

ss317 -> bool :- true ; xx :- yy
-- hand optimized (folded) version of ss316

Dubious Constant Propagation

Description Optimized?

118 CMUISE[-92.TR-32

Time :ss3lS 1.0) vs ss315 (1.5) yes

ss3lB -> xx :-1.00000001 ; bool :-1.00000001 - 1.0 >0.0
-- use of literal expression could be folded

ss315 -> xx :=1.0 ;bool :-true;

-- note, these 5 tests will detect dubious constant
propagation of floating point values when there is a single

-- precision float type of 6 or 7 digits (eq. 32 bits) and
-- a more precise type with at least 9 so that the literal
-- expression 1.00000001-1.0 will yield value 1.0e-8 but when
-- stored into single precision variable will have value 0.0.
-- The optimization of propagating the long literal would be

1,,bious, although It w'nuld bk'! valid4 to propagatte the val..e
-- of the literal rounded (or truncated as is systems normal
-- procedure) to single precision.

Constant Propagation

Descript ior Optimized?

Time :ss366 (0.8) vs ss7 (0.8) nostatistics

ss366 ri :-1 ;-- range check enabled
-- assign literal to variable with range constraints
-- Optimization :folding (omit tests at execution time)

ss7 kk :-1;
-- Integer assignment, literal "I to library scope variable.

Constant Propagation

Description Optimized?

Time :ss540 (0.8) vs ss7 (0.8) nostatistics

ss540 xx :-C 1.0 + 2.0 ** (-100)) - 1.0;
Literal floating point expression in assignment statement.

-- LRt¶ does not require evaluation with rational package.
-- Problem also tests precision of evaluation.

ss7 kk 1- ;
-- Integer assignment, literal "l- to library scope variable.

Constant Propagation
---- --

Description Optimized?
---- --
Time :ss556 (1.6) vs ss7 (0.8) nostatistics
---- --

ss556 1i 0
ii ii + 1 -- constant propagation?

-- Integer constant propagation. Assign zero to a variable,
-- increment variable in next statement.

CMUISEI-92-TR-32 119

sa? kk :- 1
-- Integer assignment, literal '11 to library scope variable.

Common Subexpression Elimination

Description Optimized?

Time :ss21O (12.0) vs ss2ll (16.0) yes

expression yy~zz is common in ss2lO and hand optimized in ss2ll

ss21O -> xx ;-(yy * zz- 0.125) / (yy *zz);

ss2ll => xx :=yy * zz ;xx := xx - 0.125) / xx;

Common Subexpression Elimination

Description Optimized?

Time :ss2lO (12.0) vs ss643 (12.0) yes

expression yy~zz is common in ss2lO and yy'zz and zz*yy are
common in ss643

ss2-0 -> xx :- yy * zz - 0.125) / (yy *zz);

ss643 -> xx :- yy * zz - 0.125) / (zz * yy);

Common Subexpression Elimination-----------------

---- ---
Domn uesription Optiinizedn

---- ---
Dime scritio C 1. vs s559) nOpttimited?

---- ---

Tie:ss2ll (>x y*z 16.) x vs x3 (0125.) / xx isic

-- s--- O----- x- yy---- zz-;- xx---- x---- 0.125 -- -- --) / x;- -- --
--

Common S -exrsso Eliminationx:-(x- .15) x

Dscritio Optimized?; x:-(012 /x

---- ---

--

inescriptyisn aOpcltaralmnoivsileidhnde
--

Time l => xx21 yy 16.)z vs (x -0125.) / xx isic
--

ss533 => yx: yy * zz; xx : (yx - 0.125) / y;
--

120 CMUJSEI-92-TR-32

Common Subexpression Elimination

Description Optimized?

Time :ss644 (1.1) vs ss84 (0.8) nostatistics

ss84 IF 1-1 > mm THEN die; END IF; -- False

ss644
IF 11 = mm AND 11 - mm AND 11 - mm AND 11 -mm AND "I2 = mm
AND mm = 11 AND mm -11 AND mm - 11 AND nm - 11 AND mmn - 1

THEN

END IF;

Boolean Variable Elimination

Description Dpt imi zed?

Time :s3176 (4.2) vs ss177 (2.9) nostatistics

ss176 bool :-11 /- mm ;
IF bool THEN 11:- 0;

ELSE 11:- 1

END IF;
bool -- True

-- the standardization of 11 /- mm and assiqnrment ic. bool. could
-- be eliminated. If so, ss176 should have same time as ssl77

ssl77 IF 11 1=mm THEN 11 0
ELSE ii I

END IF;
boo]. :- True

-- Problem has had boolean variable elimination performed by hand.

Dead Code Elimination

Description Optimized?

Time :ss56 (1.6) vs S811 (0.8) nostatistics

ss56 11i: 11 ; ii :- mm ; -- first assignment is dead
-- Optimization test for dead assignment elimination on integers.

ssll kk :=11 ;

-- --

Description Optimized?

Time: ss68 (1.6)vs ss3 (0.8) no

CMU/SEI-92-TR-32 121

ss6a xx :- yy ; xx :-zz ; -- first assignment is dead
-- dead assignment elimination; floating point variable

ss3 xx :=yy ;

Dead Code Elimination

Description Opt imized?

Time :ss7l (0.0) vs SS0 (0.0) yes

ss7l xx :=xx;
-- Assign float variable to itself.

ss0 NULL ;

Dead Code Elimination

Description Optimized?

Time :ss225 (4.9) vs ss7 (0.8) no

ss225 FOR i IN int (1) . .int'(5)
LOOP ii :-i
END LOOP
ii :- 0

-- dead assignments within loop, killed by assignment after exit.

SS7 kk :- I ;

Dead Code Elimination

Description Optimized?

Time :ss226 (0.0) vs ss0 (0.0) yes

ss226 DECLARE
xyz real

BEGIN
xyz yy *zz;

END;
-- dead assignments within a block. Variable assigned to
-- local which is not referenced before block is exited.

ssO NULL;

Dead Code Elimination

Description optimized?

Time :ss649 C 9.8) vs ssl (0.8) nostatistics

ss649 IF 11 - m

122 CMU/SEI-92-TR-32

THEN
xx zz * (one /2.0) dead

ELSE
xx -zz * Cone *0.5 3 -dead

END IF ;
xx 1.01.0 this kills both assignments in the if

3si xx :-.0.0

Dead Code Elimination

Description Optimized?

Time :ss65l (9.0) vs Ssll (0.8) nostatistics

ss651 FOR i IN 1.-10
LOOP

kk :- ;
END LOOP
ii :-kkk

-- Assign to variable within a loop, after loop exit,
-- making all assignments within the loop dead.

ssll kk :=11;

Dead Code Elimination

Description optimized?

Time t s93 (0.0 3 vs SSG (0.0) yes

ss93 IF False THEN die ; END IF;
-- redundant code elimination - could be noop

ss0 NULL ;

Dead Code Elimination

Description Optimized?

Time :ssl95 (0.0) Vs ss0 (0.0) yes

ss195 ii :- ii ;
-- superfluous integer assignment

SSG NULL;

Dead Code Elimination

Description Optimnized?

Time :ss261 (0.0) vs sSG (0.0) yes

CMU/SEI.92-TR-32 123

ss261 GOTO Label ; << Label>> NULL;
-- Peephole optimizer should translate into a NULL.

ss0 NULL;

Dead Code Elimination

Description Optimized?

Time iss26 (0.3) vs ssO (0.0) nostatistics

ss26 GOTO 12;
<<11>> die
GOTO 11 ;
«<12»> NULL

-- Language feature test, GOTO.

ss0 NULL;

Dead Code Elimination

Description Optimized?

Time :ss376 (2.2) vs ss36 (2.3) yes

ss376 LOOP proco ; EXIT ; END LOOP
-- example with simplifiable control flow
-- redundant code elimination - (omit LOOP)

s936 procO;
-- call to library scope procedure -- body is null.

Dead Code Elimination

Description Optimized?

Time :ss377 (2.4) vs ss36 (2.3) no

ss377 LOOP
proco;
EXIT
xx :-e3 (ei, ej, ek)

END LOOP;
-- assignment is unreachable, LOOP EXIT code is superfluous

ss36 procG ;
-- call to library scope procedure -- body is null.

Dead Code Elimination

Description Optimized?

Time ;ss543 (0.3) vs ss0 (0.0) nostatistics

124 CMU/SEI-92-TR-32

ss543 DECLARE -- should be noop
BEGIN

NULL -- null body, no way to enter the handler

EXCEPTIION
WHEN OTHERS =>

die ; -no re-raise in handler
END;

-- Declare block with null body and exception handler,
-- which is unreachable and superfluous.
-- Optimization :unreachable code elimination

ss0 null;
-- Language feature test, null statement

Dead Code Elimination

Description Opt imized?

Time :ss544 (0.0) vs ss0 (0.0) yes

ss544 DECLARE -- should be noop
BEGIN

NULL
END ;

-- null body check for block overhead

ss0 null;
-- Language feature test, null statement

Dead Code Elimination

Description Optimized?

Time :ss751 (0.0) vs ss0 (0.0) yes

ss751 IF False
THEN

ii jj;
END IF ;-- unreachable assignment

-- Optimization test: omission of an unreachable assignment.

ssD null;
-- Language feature test, null statement

Dead Variable Elimination

Test Execution Bar Similar
Name Time Chart Groups

ss639 8.76 ***********

ss640 11.90 ****************

ss638 12.80 *~*****s*********

Individual Test Descriptions

CMU/SEI-92-TR-32 125

ss638 DECLARE
state int -- all are live due to handler

BEGIN
state 1; procO;
state 2; proco;

state t- 3; procO;
state :- 4; proc0;

EXCEPTION
WHEN OTHERS ->

procil (state
die;

END;
-- comparison to ss639 to ch-ck for dead variable elimination.

ss639 DECLARE
state int; -- assignments are dead due to no handler

BEGIN
state :1 1; procO;
state 2; procO;
state 3; procO;
state 4; procO;

END;
-- dead variable elimination. State never referenced.

ss640 DECLARE -- assignments to global, force live
BEGIN

i: 1; procO;
ii 2; procO;
1i 3; procO;
i1 4; procO;

END ;
-- comparison for dead variable elimination. ii is global

Order Of Evaluation Tests

Description Optimized?

Time : ss413 (12.7) vs ss414 ! 12.9) yes

ss413 xx := sgn (yy) + 1.7 ;
-- order of evaluation test

ss414 xx := 1.7 + sgn (yy) ;
-- order of evaluation test. A simple left-to-right order of
-- evaluation would load the literal, save value when it calls
-- on the function, and restore it after the function call.

.---

Order Of Evaluation Tests
--

Description Optimized?
---- ---

Time : ss415 (11.1) vs ss416 (11.5) yes

--

-- computes the square root of 2.0
-- statement is a Newton iteration

xx :- 1.414159 ; -- this makes each iteration essentially
-- a self transformation

--

ss4 1 5 xx := 0.5 * (xx + 2.0 / xx

126 CMU/SEI-92-TR-32

-- order of evaluation test, simple left-to-right order of
-- evaluation will load variable and then have to do a
-- register to register operation to add right hand
-- subexpression.

ss416 xx :=0.5 * (2.0 / xx + xx);
-- order of evaluation test, simple left-to-right order of
-- evaluation of subexpression is best here (perform
-- the divide and then add from memory - no need to save
-- and restore the quotient - however, the miltiply by

-- 0.5 should be deferred).

Data Flow

Description Optimized?

Time :ss427 (1.8) vs ssll (0.8) nostatistic5

ss427 -> LOOP ii :-11 ;EXIT WHEN ii - 11 ;die ;END LOOP;
-- Assiqn integer to another integer and test if the two are equal.

3sil -> kk :-11 ;
-- Library scope integer assignment.

Data Flow

Description Optimized?

Time :ss504 1 0.0) vs $s0 C 0.0) yes

s9504 -> IF kk /- kk THEN die ; END IF
-- kk /= kk is foldable to false.

ss0 -> NULL;

Data Flow

Description optimized?

Time :ss5O5 (1.6) vs ss0 (0.0) nostatistics

93505 -> IF ii <- 2 AND ii > 2 THEN die ; END IF
-- foldable into false. No vaJue could satisfy both subexpressions.

ssO -> NULL;

Data Flow

Description Optimized?

Time :ss558 (2.6) vs ss559 (2.5) nostatistics

ss558 -> IF mm -3 AND 11 = 2 -- true

CMU/SEI-92-TR-32 127

THEN ii :- mm - 1; -- could fold into 'il

END IF ;
-- if variables did not have values of 3 and 2, respectively
-- then the alternative would not execute, therefore optimizer
-- can simplify expressions by using bounds determined by relations.

ss559 -> IF mm = 3 AND 11 = 2 -- true

THEN ii := 1;

END IF ;

Data Flow

Description Opt imized?

Time : ss756 (0.8) vs ss 7 (0.8) no

ss 7 56 => fold testing of range constraint test which is in range

BEGIN
ri :- 0; -- range on ri is -2.,2,

EXCEPTION -- range verification at compile time?
WHEN Constrainterror -> die; -- never reached

END;
-- Could be translated as simple assignment
-- Range checking would be verified at compile time

ss7 -> kk :- 1 ;

-- Integer literal assignment to library scope variable.

Data Flow

Test Execution Bar Similar
Name Time Chart Groups

ss753 147.00 *********,.w***************** I
ss754 147.00 ******************************* I
ss755 147.50 ***************************.***. I

Individual Test Descriptions

ss753 BEGIN
ri :- reallmantissa; -- range on ri is -2..2,

-- real'mantissa needs 6 digits
die; -- will never be reached

EXCF'TION
WHEN Constrainterror -) proc0;

END ;
-- Cuuld translate into simple call on ""procO"" since the control
-- path is determinable at compile time. Assign out of range static
-- expression to an integer with range constraints. See if it
-- optimizes into a simple raise of CONSTRAINT ERROR.

ss754 BEGIN
IF real'mantissa NOT IN -2..2
THEN

RAISE Constrainterror;
END IF;
ri := real'mantissa; -- range on ri is -2..2
die; -- will never be reached

128 CMU/SEI-92-TR-32

EXCEPTION
WHEN Constraint-error => prac0;

END ;
Could translate into simple call on "1"procOl"" since the control

-- path is determinable at compile time. Explicit IF statement tests
-- static expression out of range and raises CONSTRAIrNT-ERROR.

ss755 BEGIN
ri :=real'mantissa; -- range on ri is -2.-2,

-- contraint_error will c rz.sedhere
die; -- never reached

EXCEPTION
WHEN Constraint error => NULL; -- this path taken

END;
-- Could be translated as null. Assign out-of-range static
-- expression to a variable with range constraints. Null handler.

Folding

Description Optimized?

Time :ss4O (1.6) vs 3311 (0.B) nostatistics

ss40 ii :--11;
-- integer unary minus.

ssll kk :=11 ;
-- Library scope integer assignment.

Folding

Description Optimized?

Time :ss4l (0.8) vs ss7 (0.8) no

ss4l ii :- + 1 ;
-- test for folding of static integer expressinn. "1+1".

SS? kk :=1 ;
-- Integer assignment, literal "1" to '.ibrary scope variable.

Folding

Description Opt imized?

Time :ss42 (0.8) vs ss7 (0.8) nostatistics

ss42 ii :=-1 ;
-- test for folding of static integer expression, "-I".

ass kk :1I
-- Integer assignment, literal "I" to library scope variable.

Folding

CMU/SE I-92-TR-32 129

Description Optimized?

Time :ss216 (7).5) vs 351 (0.8) nostatistics

ss216 xx :-2.0 ;xx :-xx *2 ;
-- example floating point, constant folding, constant propagating

S3l xx :=1.0
--Assign floating point variab1' from literal value.

Folding

Description Optimized?

Time :ss217 (3.5)vs as? (0.9) nostatistics

s92l7 ii :- 2 ; ii :- ii ** 2 ;-- could be folded into ii :- 4
-- example integer point constant folding, constant propagating

ss7 kk :-1 ;
-- Integer literal assignment to library scope variable.

Folding

Description Optimized?

Time :ss219 (0.8) vs asi (0.9) nostatistics

ss219 xx :-2.0 ** 2;
-- foldable floating point expression. Equivalent to ss216.

ssl xx :- 1.0 ; 5.4

-- Assign floating point variable from literal value.

Folding

Description Optimized?

Time :ss303 (1.6)vs ss302 (1.6) yes

ss303 dx :=double (1
-- convert integer literal to double

ss302 dx :- 1.0 ;
-- extended precision floating point literal assignment

--

Folding

Description Optimized?

Time :ss304 (33.2) va ss307 (27.1) nostatistics

130 CMUISEI-92-TR-32

s3304 xx :-yy 1*16
-- floating point exponentiation, -*16

s3307 xx yy *yy ; xx :-xx xx ;
xx :xx xx; xx :w xx xx ;

-- floating point exponentiation comparison

Folding

Description Optimized?

Time :ss305 (41.1) vs, ss307 (27.1) nostatistics

ss305 xx :-(yy *4) **4;
-- floating point exponentiation, ** 4) ** 4

ss307 xx yy *yy xx xx *xx

xx :xx xx; xx :xx xx;
-- floating point exponentiation comparison

Folding

Description Optimized?

Time :ss532 1 7.5) vs ss529 (7.5) yes

ss532 y :- 2.0 ; xx y- Y 2;
-- constant propagating :local variable visible in handler

ss529 x :-2.0 ;xx :-x ** 2;
-- cf 3s216
-- constant propagating with local variable not visible in handler

Folding

Description Optimized?

Time :ss532 (7.5) vs asi (0.8) nostatistics

ss532 y :- 2.0 ; xx :-y ** 2;
-- constant propagating :local variable visible in handler

ssl xx :-1.0 ;
-- Assign floating point variable from literal value.

Folding

Description Optimized?

Time :ss2 (0.8) vs ssl (0.8) nostatistics

ss2 xx :=real 1)

CMU/SEI-92-TR-32 131

-- Type conversion in static expression -- real (1)

ssl xx :- 1.0 ;
-- Assign floating point variable from literal value.

Folding

Description Optimized?

Time :ss8 (0.8)vs ss7 (0.8) yes

ssS kk :-it (1.0);
-- Type conversion from floating point literal to integer.

ss7 kk :=1;
-- Integer assignment, literal 41" to library scope variable.

Folding

Description Optimized?

Time :ss54 (1.4) vs ss53 (1.3) nostatistics

s554 ii ;-il (ei + 1 3
-- Reference to subscripted array of mnt, without checking.
-- Optimization :fold constant term into addressing expression

3353 11i: il (ei)3
-- Reference to subscripted array of mnt, without checking.

Folding

Description Optimized?

Time :ss55 (0.8) vs Sall (0.8) yes

ss55 11 :- il (1)
-- Reference array with a constant subscript.

Sall kk :-11;
-- Library scope integer assignment.

Folding

Description Optimized?

Time : ssO (0.8) vs Sal (0.8) nostatistics

ss6O xx :=-1.0 ; -- fold minus into literal value
-- Assign negative floating literal to scalar.

ssl xx :=1.0;
-- Assign floating point variable from literal value.

132 CMUISEI-92.TR -32

Folding

Description Optimized?

Time :ss189 (5.6) vs ssl90 (4.8) nostatistics

ssl89 ii :=-mm / 3 ;-- can rewrite as ii :=mm / -3
-- Could fold leading unary minus into a literal

ssi90 ii :-mm / (-3);
-- Hand folded version of ss189.

Foldable Expressions

Descript ion Optimized?

Time : s58 7 C 21.3) vs ss594 (6.0) no

xl CONSTANT 2.0 ** (---- - 70)- - - -- - - - - -- - - - - -- - - - -

xl CONSTANT rea 2.0(-0)* -0

x3 real 2.0 **(-70)

x4 real sgn (one)*2.0 **(-70);

X5 real sgn (one)*2.0 **(-70);

xO CONSTANT :=10.0 *xl

y real :-2.0 ** (+70)

ss587 y :-y + xl + xl + xl + xl + xl + xi + xl + xi + xi + xl

-- for precisions less than 140 bits,
"--"y"" is unchangei by addition, term too small
-- expression with foldab-.e subexpression using named number

ss594 y :=y + xO ; -- xO : costant :-10.0 * x1
-- comparison with ss5B7 - 593, hand folded version

Foldable Expressions

Description Optimized?

Time :ss588 (21.3) vs ss594 (6.0) no

ss588 y :-y + x2 + x2 + x2 + x2 + x2 + x2 + x2 + x2 + x2 + x2
-- foldable subexpression using constant real

ss594 y :- y + x0O -- xO :constant :- 10.0 * xl
-- comparison with ss587 - 5g3, hand folded version

Foldable Expressions

Description Optimi zed?

Time :ss589 C 24.7) vs ss594 (6.0) nostatistics

CMU/SEI-92-TR-32 133

3s589 y :- y + x3 + x3 + x3 + x3 + x3 + x3 +- x3 + x3 + x3 + x3

-- using variable initialized with literal and not modified
--

ss594 y :-y + xO ; -- xO constant :- 10.0 - xl

-- comparison with ss587 - 593, hand folded version
--- --

----- --

Foldable Expressions
----- --

Description Optimized?
----- --

Time :ss590 (24.8) vs ss594 (6.0) no
----- --

--

ss59O y :-y + x4 + x4 + x4 + x4 + x4 + x4 + x4 + x4 + x4 +x4

-- expression with foldable subexpression using variable

-- initialized with expression and not modified
--

ss594 y :=y + xO ; -- xO :constant :=10.0 *xl

-- comparison with ss587 - 593, hand folded version

Foldable Expressions

Description Optimized?

Time :ss59l (24.7) vs ss594 (6.0) no

ss591 y :-y + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5

-- comparison with ss587-590, using variable which is
-- modified, but is invariant within the timinxg loop

ss594 y :-y + x0 ; -- xO :constant :-10.0 * xl
-- comparison with ss58l - 593, hand folded version

Foldable Expressions

Description Optimized?

Time :ss592 (25.3) vs ss594 (6.0) nostatistics

ss592 y :-y + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5 + x5
IF bool THEN die ; prodl (x5) ; END IF

-- here expression with x5 is not loop invariant

-- comparison with ss587-591, expression not timing loop invariant

ss594 y :- y + xO ; -- xO :constant :-10.0 * xl
-- comparison with ss587 - 593, hand folded version

Foldable Expressions

Description Optimized?

Time :ss593 (24.8)vs ss594 (6.0) no

ss593 y :- y + xx + xx + xx + xx + xx + xx + xx + xx + xx + xx;

134 CMU/SEI-92-TR-32

-- xx is global, expression is not loop invariant
-- comparison with ss587-592, variable is global, not invariant

35594 y :-y + xO ; -- xO :constant :-10.0 *x1

-- comparison with ss587 - 593, hand folded version

Foldable Expressions

Description Optimized?

Time :ss595 (23.0) vs ss594 (6.0) no

ss595 y :-y + 2.0 **(-70) + 2.0 ** (-70) + 2.0 *- (-70) +

2.0 (-70) + 2.0 **(-70) + 2.0 *~(-70) +

2.0 **(-70) + 2.0 **(-70) -+ 2.0 **(-70) +

2.0 *W(-70) + 2.0 (-70);

-- foldable subexpression using literals -- cf ss587

ss594 y :-y + x0 , -- xO :constant :- 10.0 * xl
-- comparison with s3587 - 593, hand folded version

Foldable Boolean Expressions

Description Optimized?

Time : qn27 (1.1) vs ss84 (0.8) nostatistics

ss227 IF 11 > mm OR False THEN die ;END IF

-- foldable boolean expression, OR False

3984 IF 11 > mm THEN die ;END IF ; -- False
-- IF statement, integer relation (False), no ELSE clause

Foldable Boolean Expressions

Description Optimized?

Time :ss230 (1.1) VS 3384 (0.9) nostatistics

ss230 IF 11 > mm OR False OR False THEN die ; END IF
-- foldable boolean expression, OR False OR False

5284 IF 11 > mm THEN die ; END IF ;-- False
-- IF statement, integer relation (False), no ELSE clause

Foldable Boolean Expressions

Description Optimized?

Time :ss23l (1.5) vs ss84 (0.8 3 nostatistics

ss23l IF 11 > mm OR ELSE False OR ELSE False THEN die ;END IF
-- foldable boolean expression OR ELSE False OR ELSE False

CMU/SEI-92-TR-32 135

ss84 IF 11 > mm THEN die ;END IF ; -- False
-- IF statement, integer relation (False), no ELSE clause

Foldable Boolean Expressions

Description Optimized?

Time :ss232 (1.2) vs ss84 (0.8) nostatistics

ss232 IF 11 > mm OR ELSE False THEN die ;END IF;
-- example of foldable boolean expression OR ELSE False

ss84 IF 11 > mm THEN die ; END IF ; -- False
-- IF statement, integer relation (False). mo ELSE clause

Foldable Boolean Expressions

Description Optimized?

Time :ss239 (0.0) vs ss0 (0.0) yes

ss239 FOR i IN int' (2) . .int' (1) LOOP die ; END LOOP;
-- example of FOR loop with null range, compile time determinable

ss0 NULL;

Folding in Inline Function

Test Execution Bar Similar
Name Time Chart Groups

ss565 1.42 ***

ss563 1.43 ***

ss564 1.91 t***

Individual Test Descriptions

FUNCTION max2 (i , j : mt) RETURN mnt IS
BEGIN

IF i > j THEN RETURN i
ELSE RETURN j;

END IF
END max2;
PRAGMA inline (max2

ss142 xx :-max2 (yy , 22);
-- call on local inline function

ss563 ii :-max2 (1 , 100) ;
-- inline function with literals, can be folded into ii :=100

ss564 ii :-max2 (0 , ei) ;
-- inline function test, first actual parameter to max
-- function is 0, permitting simplification.

136 CMU/SEI-92-TR -32

ss565 ii :-max2 (ei , 0
-- inline function test, second actual parameter to max
-- function is 0, permitting simplification.

Folding in Inline Function

Description Opt imized?

Time :ss563 (1.4) vs ss7 (0.8) nostatistics

ss563 ii :=max2 (1 , 100)
-- inline function with literals, can be folded into -ii :-100

ss7 kk :-1 ;
-- integer literal assignment to library scope variable.

Machine Idioms

Description Optimized?

Time :ss29 (4.0) vs ss3 (0.8) no

ss29 xx :=abs (yy) ;
-- Language feature test, floating point "abs".
-- Optimization :machine idiom "load absolute value" instruction

ss3 xx := yy ;
-- Assignment of two floating point variables, library scope.

Machine Idioms

Description Optimized?

Time :ss3O (0.8) vs S9ll (0.8) nostatistics

ss3O ii := abs (11) ;
-- Language feature test, integer "abs"
-- Optimization :machine idiom, "load absolute value*

ssll kk :=11 ;
-- Library scope integer assignment.

Machine Idioms

Description Optimized?

Time :ss4O (1.6) vs sail (0.8) nostatistics

ss4O ii :--11;
-- Language feature test, integer unary minus.
-- Optimization :machine idiom - "load complement"

ssll kk :=11;
-- Library scope Integer assignment.

CMUISEI-92-TR-32 137

Machine Idioms

Description Optimized?

Time : ss45 (0.8) vs ss7 (0.8) nostatistics

5545 ii :- 0;
-- Assign external integer to zero: machine idiom (clear memory)

ss7 kk :- 1;
-- assignment of literal "l to library scope variable.

Machine Idioms

Description Optimized?

Time : ss52 (0.9) vs SS9 (1.1) yes

ss52 ii :- 11 + 1 ;
-- Test use of "INC" instruction for "+1'.

Ss9 kk :- 11 + mm ; -- Integer addition.

Machine Idioms

---- --

Time scritio C 40)v s 0.)nOptimizics
---- --

ss59 xx :- -yy ;
-- Unary minus, floating point: machine idiom - load negative

ss3 xx :- yy ;
--Assignment of two floating point variables, library scope.

--

---- --
Machine Idioms
---- --

Description Optimized?
--
Time : sslIS (4.0) vs ssll4 C 3.1) nostatistics
---- --

--
ssll5 a~field_1 :-b.field_ I a.fiejld_3 :- b.field_3

a.field_4 :=b.field_4 ;a.field_2 :m b.field_2
-- Record component by component assignment (all fields).
-- Optimization: machine idiom (block move instruction)

--

ssll4 a :- b ;
-- Record assignment.

--

Machine Idioms

138 CMU/SEI-92-TR-32

Description Optimized?

Time :ssl28 (2.5) vs ssl29 (2.6) yes

ss128 IF hue < black THEN hue :=color'succ(hue) ;END IF;
IF hue > white THEN hue coiorlpred(hue); END IF;

-- PRED and SUCC functions on enumeration types.

ss129 IF ci < E THEN ci ei + 1 END IF
IF ei > 0 THEN ci ei - 1 END IF

-- Same computations as in ss128 on integers
-- Optimization :machine idioms - (inc and dec)

Machine Idioms

Description Optimized?

Time : ssl96 (0.9)vs ss20l 2.9) yes

ssl96 ii :=pp * 2;
-- natural integer multiplication: machine idiom - shift?

ss2Ol ii :=pp *1009;
-- natural integer multiplication - not power of 2

Machine Idioms

Description Optimized?

Time :ss198 (1.1) vs ss2Ol (2.9) yes

ss198 ii :-pp * 4;
-- natural integer multiplication: machine idiom - shift?

ss201 ii :- pp * 1009;
-- natural integer multiplication - not power of 2

Machine Idioms

Description Optimized?

Time : ss201 C 2.9) vs ss202 (3.0) yes

ss201 ii := pp * 1009;
-- natural integer multiplication - not power of 2

ss202 ii :=11 * mm ;
-- integer multiplication

Machine Idioms

Description Opt imized?

CMU/SEI-92-TR-32 139

Time ; sl97 (1.3) vs ss2O3 (4.8) yes

ss19l ii :-pp / 2 ; -- could shift
-- naturp'l divide multiplication, 12
-- Optirn~zation :machine idiom - shift?

ss203 ii ;-pp / 1009;
-- natural division, 1009

Machine Idioms

Description Optimized?

Time :ss199 (1.1) vs ss200 (1.7) yes

ss199 ii :- pp mod 4 ; -- could mod by masking
-- natural integer mod, MOD 4
-- Optimization :machine idiom - AND masking operation

ss200 ii :- pp - ((pp / 4)* 4)
-- expression comparable to MOD 4
-- Optimization :machine idiom - AND masking operation

Machine Idioms

Description Optimized?

Time :ss204 (1.8) vs ss200 (1.7) nostatistics

ss204 ii ;- pp rem 4 ;
-- natural integer REM, REM 4

ss200 ii :- pp - ((pp / 4) * 4)
-- expression comparable to MOD 4
-- Optimization :machine idiom - AND masking operation

Machine Idioms-- - -- - -- - -- - -- - -- - -- - -- - -- -

---- ---
Dahiescripto nOtiizd

---- ---

Di e scritio Op05tivmized?0.) ye
---- ---

If times are the same, system is NoT using special idioms
for zero compare.

ss2D7 IF 11 < 0 THEN die ; END IF
-- machine idiom - does load set condition codes?
-- Relational test, compare integer variable against 0

ss208 IF 11 > 100 THEN die ;END IF;
-- relational expression, integer / non-zero iiteral comparison.
-- machine idiom -comparison w.ith literal: compare immediate

--- ---

140 CMU/SE I-92-TR-32

Machine Idioms

Descr ipt ion Optimized?

Time :ss323 (4.2) vs ss324 (4.2 yes

If times are the same, system is NOT using special idi~oms
for zero compare.

ss323 IF yy <- 0.0 THEN die ;END IF
-- floating point compare against zero
-- machine idiom - load set condition codes against zero

ss324 IF yy <= 0.1 THEN die ;END IF;
-- floatirg point literal comparison against non-zero

Machine Idioms

Description Optimized?

Time : s215 (1.6) vs Sasl (0.8) nostatistics

ss215 ra.i :-rb.i ;ra.j :.rb.j ;
-- machine idiom, block move? Copy two consecutively allocated
-- fields from one instance of a record type to another.

ssll kk :-11 ;

Machine Idioms

Description Optimized?

Time :ss503 (1.6) vs ss0 (0.0) nostatistics

ss503 ii :- ii + 1 ;ii :_ii - I ;
-- Increment and decrement same integer scalar -- could be noop

.Sao NULL ;

---- ---

--
ss205 IF 11 - mm > 0 THEN die ; END IF;

-- Subtract two integers and compare result to 0
-- aLithmetic expression sets condition codes to
-- reflect comparison again'st 0. If so, no need
-- for explicit compare

--
ss206 IF 11 > mm THEN die ;END IF;

-- Directly compare two integers. Compare with ss205.
-- arithmetic expression sets conditicn codes to

CMU/SEI-92-TR-32 141

-- reflect comparison against 0. If so, no need
-- for explicit compare

Jump Tracing

Descript ion Opt i.'iZed?

Time :ss250 (0.0) vs ss0 (0.0) yes

ss250 LOOP EXIT ; END LOOP ;-- should be a noop

ss0 NULL

Jump Tracing

Description Optimized?

Time : s619 (0.4) vs ss0 (0.0) nostatistics

ss6l9 <<10»> COTO 11 ;«12>> GOTO 13 <<14>> COTO 15
«<16»> COTO 17 <<«11>> COTO 12 <<13>> COTO 14

«<15»> GOTO 16 ; «17»> null;
-- can be jump traced into a null. 6 "GOTO" statements which ý,urmp
-- to another "GOTO" statement. Statements are not in order.
-- Test for jump tracing optimization.

ss0 NULL;

Jump Tracing
--- ---- I------ --

Description Optimized?
---- --
Time :ss620 (0.0)vs ss0 (0.0) yes
---- --

ss620 «<mO»> -)TO ml «<ml>> GOTO m2 <<mn2>> GOTO m3
<<m3>> GOTO m4 <<«m4>> COTO m5 <<«in>» COTO m6
<<in>> GOTO m7 <<m7>» null;

-- A peephole optimizer which omits unconditional branch to
-- the next instruction would suffice to optimize this
-- 6 "GOTO" statements which branch to next statement.
-- This is a simpler test for jump tracing that ss619.
-- A peephole optimizer which omits a branch to the next
-- instruction would suffice to optimize this problem.

ss0 NULL;
--

---- --
Jump Tracing

Description Opt imized?

Time :ss26 (0.3) vs ss0 (0.0) nostatistics

ss26 COTO 12; <<11>> die; GOTO 1).; <<12>> NULL;

142 CMU/SE I-92-TR-32

-- Language feature test, GOTO.

ssO NULL;

Jump Tracing

Description Opt imized?

Time s s261 (0.0) Vs ssO 0.0) yes

ss261 GOTO label; <<label>> NULL;
-- omittable code, either by flow analysis or peephole

ss0 NULL;

Loop Fusion

Description Optimized?

Time :ssl80 C 8.9) vs ss181 C 7.9) no3tatiStiCS

sslBO FOR i IN l.-5
LOOP

ii
END LOOP

FOR i IN l..5
LOOP

el (i1 1.0
END LOOP

-- Problem has two separate FOR loops which can be fused.

ss181 FOR i IN 1-.5
LOOP

el 1 1.0;
END LOOP

-- Problem has one loop fused by hand. Compare with ss1BO.

Loop Interchange

Description Optimized?

Time :ss749 C 912.9) vs ss75O (893.3) nostatiStiC5

ss749 FOR j IN int1 i) . .int' (10)
LOOP

FOR i IN int' 1U) ..int' (10)
LOOP -- el(j) is an invariant in this LOOP

matrix (J, i) e2 C J, i) + el C *2

END LOOP;
END LOOP;

-- Optimization test FOR invariant LOOP code motion. This

-- example contains an invariant expression in an inner Loop.

SS750 FOR i IN int' Cl) . .it
1 (10)

CMU/SEI-92-TR-32 143

LOOP
FOR J IN int (1) ..int' (10)

LOOP -- el~i) is not invariant in this LOOP

matrix (i, j e2 (i, j) + el (j C 2

END LOOP;
END LOOP;

-- Test FOR LOOP interchange optimization.

Loop Unrolling, Test Elimination

Description Optimized?

Time :ss541 (102.3) vs ss542x (94.8) nostatistics

ss541 FOR i IN 1. .ei *10

LOOP
IF i1 1
THEN

el 1 1.0 + el (i1 2.0
ELSE

el i C el (i - 1) + el Ci C/2.0
END IF;

END LOOP;

-- unrolling, test elimination. This has variable upper bound.

ss542x el (1) :- 1.0 + el (1 1)/2.0
IF ei >= 1
THEN

FOR i in 2. .ei*l0
LOOP
elCi (ci e (i-I + el 1 2.0;

END LOOP;
END IF;

-- unrolled version of 3s541

Loop Unrolling, Test Elimination

Description Optimized?

Time :ss542 (100.9) vs ss542x (94.8) no

ss542 FOR i in 1.-10
LOOP

IF i1 1
THEN

ei 1 : 1.0 + el (i1 2.0

ELSE
el i el- . (i - 1) + el 1 2.0

END IF;
END LOOP;

-- unrolling, test elimination. ss54l with literal upper bound.

ss542x el (1) :- (1.0 + el 1 C)/2.0
IF ei >- 1

THEN
FOR i in 2. .ei *10

LOOP
el CiC Cc (i el - 1) + el Ci C/ 2.0

END LOOP;

144 CMU/SEI-92-TR-32

END IF;
-- unrolled version of ss54l

Loop Unrolling

Description optimized?

Time :ss105 (27.4) vs ss642 (22.1) nostatistics

ss1O5 FOR i IN 1.-10 LOOP procO ; END LOOP
-- FOR LOOP, containing procedure call.
-- Optimization :LOOP unrolling

ss642 proc0 ; .. procO ; -- 10 calls on procO
-- Sequence of procedure calls. Timing consistency check.

Loop Unrolling

Test Execution Bar Similar
Name Time Chart Groups

ss238 0.78
ss3 0.78 ****~*

ssl7 1.41
ss57 1.42 ************

ss240 2.07 **w***s******.***

Individual Test Descriptions

ss3 xx :=yy;
-- Assignment of two floating point variables, library scope.

ssl7 el (ei) :=one ;
-- assignment to one dimensional array of real.

ss57 el (i) :-one ; -- i is LOOP index
-- Test subscript computation using FOR LOOP index.

ss238 FOR iIN 1-1lLOOP el (i) := one ; END LOOP;
-- can unroll LOOP into single assignment statement
-- simple example amenable to LOOP unrolling

ss24D FOR i IN 1- 2 LOOP el (i) -- one ; END LOOP
-- simple example amenable to LOOP unrolling

Loop Flattening :2 Dimensional Arrays of R~eal

Test Execution Bar similar
Name Time Chart Groups

ss18 3.96
ss405 156.40 *****************

individual Test Descriptions

CMU/SEI-92-TR-32 145

If time to execute ss405 is less than 100 times the time to execute
sslS, then the compilation system is treating subscript calculations
using for loop indexes better than general usage. may be using
strength reduction, register allocation, or other techniques lir 2luding
loop flattening. Flattening is the merging of the two nested loops
into one larger loop.

e2 :ARRAY Cint' (1) . .it
1 (10) ,int' (l) . int' (10)) OF real

ei, ej, ek mnt :1;

ss18 e2 (ei, ej) :-one;
-- assignment to two dimensional array of real. Checking.

ss405 FOR i IN 1 .. 10 LOOP
FOR j IN 1 .. 10 LOOP

e2 (int Ci), int (j)) one
END LOOP

END LOOP;
-- nested FOR loop to access a 20 array -- loops could be flattened

--- ---
Loop Invariant Motion
--- ---

Description Optimized?
--
Time :ss212 (9.9) vs ss3 C 0.8) no
--

ss212 FOR i IN 1-.10 LOOP xx :1 yy ; END LOOP
--example where invariant motion is possible

ss3 xx :-yy ;
--

--
Loop invariant Motion
--

Description Optimized?
--
Time :ss429 (3.2) VS s3430 (3.2) yes
--

FUNCTION al (i :mit) RETURN mnt IS

Cal :CONSTANT ARRAY (int' (0)..int' (2)) OF mnt :- (0, 1, 2)
BEGIN

RETURN cal (i
END al ;

ss429 ii :-al (ei);
-- Is constant static array promoted to outer level?

ca2 :CONSTANT ARRAY (int' (0). .int' (2)) OF mnt :=(0, 1, 2)
FUNCTION a2 (i mnt)RETURN int IS
BEGIN

RETURN ca2Ci
END a2 ;

ss430 ii :-a2 (el) ;--non-local constant array
-- Is constant static array promoted to outer level?

--

--
Loop Invariant Notion

146 CMUISEI-92-TR-32

Description Optimized?

Time :ss536 1 283.1) vs ss535 (91.7) nostatistics

ss536 FOR 1 IN 1..mm LOOP
xx :-0.0
FOR kc IN el'RANqGE LOOP

xx :=xx + el (kc 2
END LOOP;

END LOOP ; -- xx is computed from invariants in 'I' loop
-- very smart optimizer can do inner loop once

ss535 xx :-0.0 ;
FOR kc IN el'RANGE LOOP

xx :- xx + el (k) ** 2
END LOOP ; -- sample to embed in code for ss536

Loop Invariant Motion

Description Optimized?

Time :ss752 (9.9 1vs ssll (0.8) nostatistics

ss752 FOR i IN 1.-10 LOOP ii :- jj ; END LOOP ;
-- could be optimized into an assignment statement, ssll

ssll kkc :- 11 ; -- Library scope integer assignment.

FOR LOOP with NULL body

Description Optimized?

Time :ss1O6 (5.8) vs ss0 (0.0) nostatistics

ss106 FOR i IN 1- 10
LOOP

NULL
END LOOP ; -noop

-- FOR loop with null body, could be noop.

ss0 NULL;

Test Merging

Description Optimized?

Time :ssl78 j 2.3) vs ss179 (2.9) yes

ssl7B IF 11 > mm

THEN ii 0
ELSE ii I
END IF ;
IF 11 >mm~

CMU/SEI-92-TR-32 147

THEN xx 0.0

ELSE xx 1.0
END IF ;

-- Problem has tests which may be merged.

ss179 IF 11 > mm
TKEN 11 0

xx 0.0
ELSE ii 1

xx 1.0
END IF;

-- Problem has tests in ss178 merged by hand.

Test Merging

Description Optimized?

Time :ss440 (11.0) vs ss441 (9.2) nostatistics

ss440 FOR i IN 1- 2

LOOP
IF ii - 1 THEN il 11 -11 END IF
IF ii =1 THEN el ei) =one ;END IF
IF ii/= 1 THEN procO ; END IF'
ii :-1 - ii

END Loop;
-- test merging. Several IF's can be merged.

ss441 FOR i IN 1.-2
LOOP

IF ii - 1
THEN

el ei) =one

ELSE
procO;

END IF;

END LOOP
-- This version has merged tests, compare with ss440

R~espect for Parentheses Test

Test Execution Bar Similar
Name Time Chart Groups

SS69 6.28 **************

.SS7O 7.85 ***************~*

Individual Test Descriptions

IF ss69 - ss7D THEN parentheses are NOT respected.

ss69 xx := 1.0 - yy;
-- This is a folded version of ss70.

ss7O xx :=C 0.5 - yy) + 0.5;
-- This might be improperly folded into ss69.

148 CMU/SEI-92-TR-32

Superfluous Parentheses

Description Optimidzed?

Timne :ss389 C0.8) vs ss3 10.8 1 yes

---- ---

ss389 xx :- yy)
-- Do superfluous parentheses produce code?

ss3 xx ;=yy
-- Assignment of two floating point variables, library scope.

Superfluous Parentheses

Description Optimized?

Time :ss391 (8.0) vs ss390 (8.0) yes

ss391 xx :-(one + yy)+ zz ;
-- Add 3 float variables, parentheses around first two.

ss390 xx :-one + yy + zz;

-- Add 3 float variables

Superfluous Parentheses

Description Opt imized?

Time :ss392 (8.0) vs ss390 (8.0) yes

ss392 xx :-one + (yy + zz) ;
-- Add 3 float variables, parentheses around last two.

S3390 xx :- one + yy + zz
-- Add 3 float variables

superfluous Parentheses

Description Optimized?

Time :ss393 (0.8)vs ssll (0.8) yes

ss393 ii :-(mm)

ssll kk :=11 ;

-- Library scope integer assignment.

Superfluous Parentheses

Description Optimized?

Time :ss395 C1.3) vs ss394 C1.3 1 yes

CMU/SEI-92-TR-32 149

ss395 ii :-(ei + ej) + 11 ;
-- Add 3 integer variables, parentheses around first two.

ss394 ii :- ei + ej + 11;
-- Add 3 integer variables

Superfluous Parentheses

Description Opt imized?

Time :ss396 (1.3) vs ss394 (1.3) yes

ss396 ii -ei + (ej + 11 1)
-- Add 3 integer variables, parentheses around last two.

ss394 ii :- ei + ej + 11;
-- Add 3 integer variables

Order Of Evaluation 4 Register Allocation Test For Parameters

Description Optimized?

Time :s9546 C 23.0) vs ss547 C 21.6 nostatistics

ss546 ii :-max (1, max (2, max (3, max C4, max C5, max
6, max (7, max (8, max (9, 10))))))));

-- non left-to-right order of evaluation can reduce register
-- save/restore activity. Call on two parameter function, with
-- left actual parameter a literal and right a further function call.

-- Nested 8 levels. integer function (max). A strict left to right
-- order of evaluation will result in unnecessary storing and loading

ss547 ii :-max (max (max (max (max (max (max (max Cmax
(10.9), 8), 7), 6), 5), 4), 3), 2),) ;

-- Analogous to ss546 with calls nested on first parameter.
-- A left to right order of evaluation is best here. Good
-- compiler will do both ss546 and ss547 is about the same time.

Order Of Evaluation 6 Register Allocation Test For Parameters

Description Optimized?

Time : s548 (80.1) vs ss549 (84.0) yes

ss548 xx :-max (1.0. max (2.0, max (3.0, max (4.0, max (5.0.
max C 6.0, max (7.0, max (8.0, max (9.0, 10.0))))l

-- non left-to-right order of evaluation can reduce
-- register save/restore activity

ss549 xx :-max (max (max (max (max (max (max (max (max
(10.0, 9.0), 8.0), 1.0), 6.0), 5.0), 4.0), 3.0), 2.0), 1.0)

-- cf ss548, for optimizing compilers, should be about same

150 CMU/SEI-92-TR-32

Order Of Evaluation & Register Allocation Test For Parameters

Description Optimized?

Time ; ss550 (15.5) vs ss551 (15.2) nostatistics

il : int RENAMES global.il (1)

i10 : int RENAMES global.il (10)

ss550 ii (il + (12 + (i3 + (14 + (i5 + (i6 + (i7 +

i8 + C i9 +ilo)))))))))
-- Integer addition with parameters nested on second operand.
-- A left-to-right order of evaluation may generate unnecessary
-- stores and reloads.

ss551 ii := (((((((((il0 + i9) + i8) + 17) + i6) +

i5) + i4) + i3) + i2) + il) ;
-- Integer addition with parameters nested on first operand.
-- A left-to-right order of evaluation is best.

Register Allocation With Call On Extern.l Procedure

Test Execution Bar Similar
Name Time Chart Groups

ss442 106.30 ********************************** I
ss443 106.30 *******************************

Individual Test Descriptions

IF ss443 << ss442 THEN opt := YES

ss442 xx := 0.0 ;
FOR i IN el'RANGE
LOOP

xx := xx + el (i ;
IF el (i) > 2.0 -- never true

THEN
xx el (i) ;
die ; -- die is a global procedure

END IF ;
END LOOP
-- register allocation - with call on external procedure,
-- compiler cannot allocate "xx" to register within FOR LOOP.

ss443 xx :- 0.0 ;
FOR i IN el' RANGE
LOOP

xx := xx + el (i ;
IF el (i) > 2.0 -- never true

THEN
xx el (i 3

END IF ;

END LOOP
-- register allocation - no call on "die" so

-- xx can be allocated to register

CMU/SEI-92-TR-32 151

Register Allocation

Description Optimized?

Time :ss262 (18.4) vs ss263 (11.8) nostatistics

ss262 xx :-0.1 - yy;
IF xx < 0.0 THEN xx -xx ; END IF
IF xx > 1.0 THEN xx 1.0 /xx ;END IF

-- only 1 register store for xx is required if compiler
-- tracks registers. See time for ss263
-- example where good register usage would show up.

-- Floating point variable is used in several consecutive

-- IF statements.
--

ss263 xx :-abs (0.1 - yy ;
IF xx >1.0 THEN xx :- 1.0 / xx ;END IF

-- example where good register usage would show up.

-- Variable used in 2 consecutive statements.

Register Allocation

Description Optimized?

Time :ss264 (2.6) vs ss266 (1.6) no

ss264 ii :- jj ;IF ii < 0 THEN ii :=-ii ; END IF;
-- example where good register usage would show up.
-- Integer variable stored in one statement is referenced
-- in relational test and in the THEN clause of the statement.

ss266 ii :- abs (jj)
-- integer abs

Register Allocation

Description Optimized?

Time :ss265 (2.0) vs s9266 (1.6) no

ss265 ii := j ii :-abs (ii) ;
-- example where good register usage would show up.
-- Integer variable stored in one statement is referenced
-- in the next statement.

ss266 ii :=abs (jj
-- integer abs

Relational Expression OR vs OR ELSE

Description Optimized?

Tlime ;ss224 (2.3) vs ss223 (2.2) no

152 CMU/SEI.92-TR-32

An optimizing compiler could determine that the relations 'mm"139'
and 'mm > 1000' could not have side effects (other than perhaps
raising an exception which would be permissible to ignore) and
so it could validly treat the 'OR' operator as an 'OR ELSE'.

ss223 IF mm =11 OR mm - 139 OR mm > 1000
THEN

die;
END IF

-- relational expression exampil0 , OR

ss224 IF mm -11 OR ELSE mm - 139 OR ELSE mm > 1000
THEN

die;
END IF;

-- relational expression example, OR ELSE.

IF Statement - Integer, Float - AND vs AND THEN

Description Optimized?

Time :ss88 (5.5) vs ss89 (1.2) nostatistics

ss88 IF 11 > mm AND yy > zz
THEN

Die
END IF; - False

-- IF statement, integer and floating relation (false) "AND"

ss89 IF 11l>mm AND THEN yy >zz
THEN

Die
END IF ; -False

-- IF statement, integer and floating relation (false) "AND THEN"

IF Statement - integer Relations, Simplifications

Description Optimized?

Time :ss228 (1.3) vs ss229 (1.3) yes

Because the possibility of side effects can be eliminated at
compile time, an optimizing compiler could treat these statements
the same.

ss228 IF 11 > mm OR bool
T~HEN

die
END IF

-- boolean expression, integer relation OR boolean variable

ss229 IF 11 > mm OR ELSE bool
THEN

die
END IF;

-- boolean expression, integer relation OR ELSE boolean variable.

CMU/SEI-92-TR-32 153

IF Statement - Integer Relations, Simplifications

Description Optimized?

Time :ss231 (1.5) vs ss84 (0.8) nostatistics

ss231 IF 11 > mm OR ELSE False
OR ELSE False

THEN
die

END IF;

-- foldable boolean expression "OR ELSE False OR ELSE False"

ss84 IF 11 > mm
THEN

die
END IF ; -False

-- IF statement, integer relation (False), no ELSE clause

Strength Reduction

Description Optimized?

Time :ss213 (233.3) vs ss422 (47.6) no

ss213 i.1: 0 ;
FOR i in 1. .10
LOOP

iiii + ii l 1)*
END LOOP;

ss422 kk +1
11 0
FOR i in 1. .10
LOOP

ii :=ii + ii (i) *kk ; kk :--kk
END LOOP;

-- Strength reduction, by hand, of ss213. Reduces an
-exponential by FOR LOOP index 0 -1) ** J"

Strength Reduction

Description Optimized?

Time :ss423 (16.7)vs ss424 (20.6) yes

ss423 isum :=0;
FOR i in 1. .ten
LOOP

ii i*2

isum isum + ii

E~n LOOP
-- Has multiply by FOR LOOP index

ss424 ii :=0

154 CMU/SE I-92-TR-32

isum :=0
FOR i in 1. .ten
LOOP

ii :-ii + 2 ;isum :=isum + ii
END LOOP

-- Hand reduced form of 55423,
-- with multiply by FOR LOOP index reduced to add.

Strength Reduction

Description Optimized?

Time :ss425 (33.9) vs ss426 (36.6) yes

ss425 analogous to ss423 with WHILE LOOP
Multiply by induction variable

-- which is not a FOR LOOP index.

ss426 analogous to ss424 with WHILE LOOP
-- Hand reduced form of ss425
-~with multiply reduced to add. Irnduction variable
-- is not a FOR LOOP index.

Strength Reduction

Description Optimized?

Time :ss15 (6.8) vs ss5 (6.8)yes

sslS xx :-yy ** 2;
-- (float) ** 2 which can be treated as (float) * (float).

ass Xxx: yy * zz

Strength Reduction

Description Optimized?

Time :ss188 (2.7) vs ss2G2 (3.0) yes

ss188 ii :-11 ** 2 ;-- could be strength reduced to 11 * 11

ss202 ii :=11 * mmjy ;
-- integer multiplication

Strength Reduction

Description Optimized?

Time :ss279 (2.8)vs ss273 (2.8) yes

ss279 ii :-lj ** 2
-- bigint type **2

CMtJISEI.92-TR-32 155

ss273 li :- 1 k;

-- bigint type multiplication

Test Swapping

Description 0pt 4 rri zed?

Time tss438 (155.8) vs ss439 (136.5) rnostatistics

ss438 FOR i IN el'range
LOOP

IF bool
THEN

el x el i zero yel Ci3

xci i 3 one yel i
ELSE

el Ci) xel. (i) zero yel Ci
END IF

END LOOP

-- test swapping. FOR LOOP with embedded IF statement
-- with LOOP invariant expressions in relation and in the
-- conditional statements. "IF" can be moved out of FOR
-- LOOP as done by hand in ss439.

ss439 IF bool
THEN

FOR i IN ei'range
LOOP

eil i 3 xei () + zero yei (i3
xei Ci) one *yei (i3

END LOOP

ELSE
FOR ± in el' range
LOOP

el (i) xci i C-zero *yei (i3
END LOOP

END IF ;
-- test swapping. Hand optimized version of as438.

References

IVADScross-aI VADScross Verdix Ada Development System for Cross -Development Environ-
ments, Version 6.05; VAX VMS =* MC68020/30; Users Guide: Verdix Corpo-
ration; January 16, 1991.

[VADScross-bj VADScross Verdix Ada Development System for Cross- Development Environ-
ments, Version 6.05; VAX VMS =* MC68020/30; Programmer's Guide; Verdix
Corporation; January 16, 1991.

156 CMU/'jEI-92-TP-32

2.13 Precision

Question: What are the performance differences between single-precision and extended-precision
numeric operations?

Summary: Assignment, arithmetic operations, and computations involving math-library functions all
take longer to perform when computed with 9 or 15 digits of floating-point precision rather than with 6
digits.The performance degradation attributable to extended-precision arithmetic ranges from 11% for
the exponentiation function to 100% for a simple assignment statement. In general, the percentage
increase in execution time was larger for the single-statememt tests than for composite tests such as the
Whetstone benchmark (14%) -3nd the PIWG B tests (19% increase with checking enabled, 23%
increase with checking suppres sed).

Discussion: Variables of an extended-precision type require more storage than their single-precision
counterparts, so it is to be expected that there is a performance penalty associated with the use of such
floating-point and fixed-point types. Users may be required to balance the need for greater precision in
computations with the efficiency of those computations. Similarly, users may define integer types with
various ranges that require, for example, 16 bits of storage to implement one type and 32 bits to imple-
ment another. A comparison of the performance of operations on these different sizes of objects may
guide the user in specifying a required precision or a range of values that maximizes the efficiency and
minimizes the storage overhead of the resultant code.

The AES, ACEC, and PIWG suites all contain tests to measure the performance of operations on fixed-
point variables but, unfortunately, none of them contains a complementary set of tests to measure the
performance of the same set of operations on fixed-point variables of greater or lesser precision. The
ACEC has a complementary set of tests for different sizes of integer objects, but the implementation of
the tests is flawed; see the second observation below for details.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: The results from the three benchmark suites show that, in all cases, there is a
performance price to pay for extended-precision floating-point computations.

AES Test Results:

Configuration 1, DIY_AES Version 2.0,Tests TI05 and TIO5b.

CMU/SEI-92-TR-32 157

The performance degradation attributable to extended-precision arithmetic ranges from 13% for expo-
nentiation (to a power of two) to 70% for division. For addition and multiplication, the percentages are,
respectively, 35% and 48%. The tests use the pre-defined types Short_Float (6 digits of precision) and
Float (15 digits of precision). These types require 32 and 64 bits of storage, respectively.

I. Group I - Runtime Efficiency Tests

1.13. T105

This test examines the efficiency of floating point
computations, in particular, the average cpu time taken
for performing a single operation of addition,
multiplication, division and exponentiation for each of
the predefined floating point types. The times measured
include the overhead of an access to a simple variable.

For the addition operation a minimum and maximum time is
given. The maximum time corresponds to the case where the
greatest amount of shifting of the operands is required
in order to align the decimal points so that the addition
can be performed.

The minimum time given corresponds to the case where no
addition is actually performed, because the operands are
so widely differing in magnitude. Rather, the largest
operand is selected as the result.

There is likely to be little difference in these maxima
and minima if the addition is performed in hardware.

The exponentiation test is performed twice, once when all
the real operands are raised to the power of 2 and then
again when exponents are generated which are in the range
that is safe for each real operand.

Exponentiation is defined in terms of repeated
multiplication in Ada (and division for negative
exponents) but an implementation may choose an
alternAtive method of calculation (eg. by taking logs or
via look-up tables).

Floating point type : shortfloat

Addition (minimum time) 5.73us
Addition (maximum time) 5.73us
Multiplication 5.85us
Division 6.29us
Exponentiation (to power of 2) 16.4us
Exponentiation (to any safe power) 14.Bus

Floating point type : float

Addition (minimum time) 7.76us
Addition (maximum time) 7 .76'is
Multiplication 8.68us
Division 10.7us
Exponentiation (to power of 2) 18.6us
Exponentiation (to any safe power) 21.9us

1.14. TI05B

This test examines the efficiency of floating point
computations, in particular, the average cpu time taken

1 58 CMUISEI-92-TR-32

for performing a single evaluation of a mathematical
function for each of the predefined floating point types.
The mathematical functions evaluated are sines, square
roots and natural logarithms. The times measured include
the overhead of an access to a simple variable.

Test failed. Malfunction in Test Harness
Exception in Unattended mode

ACEC Test Results:

Configuration 1, ACEC Release 2.0, Raw Output

The table below is a summary of ACEC raw test results; it is not produced directly by the ACEC analysis
tools. (Apart from the tests that assign a value to an element of an array, none of these tests is pro-
cessed by the Single-System Analysis (SSA) tool of the ACEC, so the process of gathering the data
and computing the percentage degradation in speed is labor-intensive.) Test descriptions are symbolic
representations of the Ada language feature being measured. The "Cnvrt" operation represents the con-
version of a literal value to the appropriate type.

Whetstone benchmark results are reported in Kilo-Whetstone Instructions Per Second (KWIPS). All oth-
er results in this table are reported in microseconds. There are no subtraction tests in the suite, and
there is no extended-precision multiplication test; these omissions appear to be an oversight on the part
of the test developers. Unlike the AES tests, the ACEC tests did not use the predefined floating-point
types; user-defined types with 6 and 9 digits of precision were used instead.

Table 3: ACEC Floating-Point Results
Test Descrption 6-Digit 9.Digit Percent

Pmcislon Precision Degradation

Assignment: y= 1.0 0.8 1.6 100.00/%

Assignment: y = Cnvrt (1.0) 0.8 1.6 100.0%/

Assignment: y=x 0.8 1.6 100.00/

Assignment: a() = x 1.4 2.2 57.1%

Assignment: y = abs(x) 4.0 6.5 62.5%

Addition: y=x+z 6.3 9.0 42.80/6

Subtraction: y=x-z N/A N/A

Multiplication: y = xz 6.8 N/A

Division: y=x/z 7.2 11.3 56.9%/

Exponentiation: y = x " 2 6.8 9.7 42-61/

Trigonometric: y = sin(x) 64.2 76.0 18.3%

Trigonometric: y = cos(x) 71.6 94.8 18.4%

Trigonometric: y = exp(x) 107.7 120.5 11.80/a

CMU/SEI-92-TR-32 159

Table 3: ACEC Floating-Point Results

Test Desciption 64DIgIt 9alIft Percent
Predeson P on Degrdaton

Trigonometric: y = log(x) 137.9 153.9 11.6%/0

Trigonometric: y - sqrt(x) 51.8 64.6 24.7%

Trigonometric: y = arctan(x) 296.2 368.3 24.30/,

Whetstone benchmark 914 KWIPS 805 KIPS 13.5%

PIWG Test Results:

Configuration 1, PIWG 12/12/87 Release, Tests B000002 and B000003.

The PIWG B tests represent portions of an actual radar tracking application. The tests initi& -no then

update a covariance matrix. When runtime checks are enabled, there is a 19% increase in the execution

time of the 9-digit test over the 6-digit test. With checks suppressed, the difference is 23%. Like the

ACEC tests, the PIWG tests used user-defined types with 6 and 9 digits of precision.

B000002 application program, tracker
TRACK WITH COVARIANCE MATRIX FLOAT 6 DIGITS

Time Required : 2.51790000000000E+01 Seconds for 10000 Repetitions

TRACK WITH COVARIANCE MATRIX FLOAT 6 DIGITS - SUPPRESS

Time Required : 1.99250000000000E+01 Seconds for 10000 Repetitions

B000003 application program, tracker
TRACK WITH COVARIANCE MATRIX - FLOAT 9 DIGITS

Time Required ; 2.99110000000000E+01 Seconds for 10000 Repetitions

TRACK WITH COVARIANCE MATRIX - FLOAT 9 DIGITS SUPPRESS

Time Required : 2.44450000000000E+01 Seconds for 10000 Repetitions

Observation 2: Analogous to the precision of floating-point types is the size of integer types. The test
results below show the performance consequences of using different sizes of integer types.

160 CMU/SEI-92-TR-32

ACEC Test Results:

Configuration 1, ACEC Release 2.0, Raw Output.

The table below is a summary of ACEC raw test results; it is not produced directly by the ACEC analysis
tools. Test descriptions are symbolic representations of the Ada language feature being measured. The
"Cnvrt" operation represents the conversion of a literal value to the appropriate type.

Table 4: ACEC Integer Results

Tetlesctiption 6-DigIt 9Diglt Percent
Pmclslon Pmcislon Degmciadon

Assignment: y =1 0.8 N/A

Assignment: y = Cnvrt (1) 0.8 N/A

Assignment: y = x 0.8 0.8 0.0%

Addition: y=x+z 1.1 1.1 0.0%0

Subtraction: y=x-z N/A N/A

Multiplication: y = x*z 2.9 2.8 -3.4%

DM.sor:: y=x/z 4.8 4.8 00./0

Exponentiation: y - x "* 2 2.7 2.8 3.7%

Mocdulus: y=xmodz 13.5 13.3 -1.4%

Remainder y= x rem z 7.1 7.1 0.0%

The negative numbers in the table actually represent an apparent improvement in performance. How-
ever, they are within the measurement tolerance of 5%, and so are not statistically significant. Therefore
the conclusion that might be drawn is that the size of the integer type has no effect on performance.
Examination of the actual code, however, showed that the definitions of the integer subtypes "lnt" and
"Bigint" may be factors behind the results. These subtypes are defined (in package Global) as follows:

type Int_Type is nvew Integer;
subtype Int is Int_Type range -32_767.. +32767;
type BigintType is new Integer;
subtype Bigint is Bigint Type range -(2**30 -1 + 2**30)
(2**30 - 1 + 2**30);

Thus "Int" and "Bigint" are subtypes of a derived type that is derived from the same parent type (Integer).
Forthe Verdix MC68030 compiler, this Integertype is a 32-bit quantity; the additional type Short_Integer
is the analogous 16-bit quantity. The above definitions do not allow the compiler to choose type Short_-
Integer for the 16-bit range of values. To allow the compiler to choose an appropriate representation,
the definition of "lnt", for example, could have been coded as follows:

type Int is range -32768 .. 32767;

CMU/SEI-92-TR-32 161

This definition does riot force the 32-bit Integer type to be used for 16-bit quantities.

Reference

•none

162 CMU/SEI-92-TR-32

2.14 Private Types

Question: Is there a difference in performance between operations on objects of a private type and
objects of a visible type?

Summary: The three suites of benchmark tests considered in this document provide no tests that
explicitly answer this question. Use of private types within tests is incidental to the feature being tested.

Discussion: Private types are declared in the visible part of a package; their corresponding full type
declarations occur in the specification after the word "private." There are certain operations that are only
available to outside program units, while there are other operations that may only be performed within
the package in which the private type is declared. Although none of the suites tests the performance of
operations on objects of a private type, it is possible to construct tests to do so. In the reference cited
below, tests were constructed to examine the difference between private and visible types and deferred
versus non-deferred private types. For a Tartan Ada compiler for a MIL-STD-1750A target processor,
there was no distinction made by the compiler between a private object and a visible object. There was
a slight performance penalty incurred when deferred types were used because of the indirect access to
these types.

References

[NASA] NASA SEAS (Systems, Engineering, and Analysis Support) Program Techni-
cal Note. NASA Goddard Space Flight Center, Flight Dynamics Division I
Code 552. April 10, 1990.

CMU/SEI-92-TR-32 163

164 CMUISEI-92-TR-32

2.15 Records

Question: What is the performance of the 'arious methods for assigning values to record objects?

Summary: Aggregate assignment of record component values is significantly more expensive than
either record-to-record assignment or component-by-component assignment. There is also a
performance penalty for using packed records. Depending on the record components, record-to-record
assignment may or may not be faster than component-by-component assignment.

Discussion: A record is a composite object with named components, usually of different types. Values
may be assigned to these components at run time (default assignment of values at compile-time is not
considered here) in three different ways:

"* a single record-to-record assignment statement

"* a set of component-to-component assignment statements

"* a single aggregate-to-record assignment

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: There are no AES or PIWG tests that address this issue; all results presented are from
the ACEC suite. This first set of results shows that component-by-component assignment is about 27%
more expensive than record-to-record assignment. Aggregate assignment is almost seven times more
expensive than record assignment and five times more expensive than component-to-component
assignment.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Record Assignment."

Language Feature Overhead

Record Assignment

Test Execution Bar Similar
Name Time Chart Groups

---- --
ssll4 3.11 ***
ssll5 3.95 ******

ssll6 21.30 **********************************
--

Individual Test Descriptions

CMU/SEI-92-TR-32 165

TYPE fields IS
RECORD

field_1 : string (1..3
field 2 : real
field 3 : color
field 4 : int range 1..10

END RECORD ;
a, b : fields ('xxx", 0.0, red, 1

ssll4 a :- b ; -- Record assignment.

ssll5 a.field 1 b.fie'd I
a.field 3 b.field 3
a.field 4 b.field_4 ;
a.field 2 b.field_2 2

-- Record component by component assignment (all fields).

ssll6 a :- ('xxxl, one, hue, ei) ; -- Record assignment, aggregate.

A comment in test 115 notes that an optimizing compiler could do a block transfer of contiguous fields,
but that to recognize this would require the compiler to reorganize the component-by-component as-
signment statements.

Observation 2: This second group of ACEC results shows the effect of packing on both a set of
component-by-component assignments and a record-to-record assignment. Mixed-mode assignments,
where a conversion from packed to unpacked, or vice versa, is required, are also measured in this group
of tests. In all cases packing has a significant effect on performance. By contrast with the previous group
of results, this group shows record-to-record assignment to be more expensive than a set of
component-by-component assignments.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, SSA Report "Field Assignments to Record (Packed, Unpacked)."

Language Feature Overhead

Field Assignments To Record (Packed, Unpacked)

Test Execution Bar Similar
Name Time Chart Groups

ss156 7.52 *******

ss157 9.92 **********

ssl60 10.60 ************

ssl61 11.50 *************

ss158 22.40 ***********************

ss159 31.10 *******************************

Individual Test Descriptions

TYPE descriptor IS -- example from LRM 13.6
RECORD fl small int :- I

f2 Boolean := True
f3 color := white
f4 med int := 200

166 CMU/SE I-92-TR-32

f5 real :-1.0
END RECORD

TYPE packed-descriptor IS NEW descriptor
PRAGMA pack (packed descriptor
a, b :descriptor
c, d :packed -descriptor

ssl56 a.fl integer (ei); a.f2 11 Imm m
a.f3 hue ;a.f4 200 *integer (i
a.f5 t-yy ; -field assignments to unpacked record

ssl5l c.fl integer (ei)c.f2 11 mm m ;
c.f3 hue c.f4 200 *integer (ei)
c.fs yy ; -field assignment to packed record

ss158 a.fl integer (ei)a.f`2 11 mm mm
a.f3 hue a.f4 200 *integer e i
a.f5 yy
c :-packed-descriptor (a) unpacked to packed

ss159 c.fl :~integer e i); c.f2 11 1mm;
c.f3 hue ;c.f4 200 *integer (ei
c.fS yy;
b :-descriptor Cc) -unpack record

ssl6O a.fl integer (ei a.f2 11 mm mm
a.f3 hue a.f4 200 *integer (i
a.f5 yy
b :=a ; -- unpacked record move

-- ---
ssl6l d.fl integer c i); d.f2 :*11 mm ;m

d.f3 hue d.f4 200 *integer (ci
d.f5 yy
c :=d ; -- packed record move

---- ---

References

* none

CMU/SEI-92-TR-32 167

168 CMUISEI-92-TR-32

2.16 Rendezvous

Question: What are the performance characteristics of the various kinds of task rendezvous?

Summary: The larger the number of parameters passed in an entry call, the slower the rendezvous
will be. The number of entries in a task has a significant effect on rendezvous performance whereas the
number of tasks in a task set has virtually no effect. Simple rendezvous performance (no passed
parameters) is slightly faster when the called task is waiting at an accept statement for an entry call.
Equal-priority tasks yield rendezvous executiun times that are about 25% faster than rendezvous times
for tasks with different priorities because the order of execution of such tasks can be arranged to reduce
the number of task switches. Use of a special pragma (pragma PASSIVE), available in the Verdix
compiler, achieves a seven-foid reduction in rendezvous execution time.

D!scusslon: The rendezvous mechanism is the primary means of inter-task communication in the Ada
programming language. It can take many forms, ranging from a simple synchronizing signal to an elab-
orate data-transfer operation with multiple choices for conditional or unconditional acceptance of the
transferred data. Ideally, a bench~nark, or set of benchmarks, to measure the performance of the Ada
rendezvous would allow a user to generate a "perforrance envelope" for all the coding choices avail-
able. In practice, the benchmark suites discussed in this document provide specific data points within
the performance envelope and give the user no control over the form of the actual tests. They do provide
useful information, but in a format that often requires the user to examine the code of specific tests in
order to understand the purpose of the tests and interpret the results. Because of the number of task
rendezvous tests in the AES and ACEC suites, results from only a subset of these tests are presented
below. The PIWG suite only contains eight tests to meabure rendezvous performance so results from
all of them are listed.

Configuration(s) tested:

1. Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb zero-wait-
state SRAM cache; 256-byte on-chip instruction cache; 256-byte on-chip data
cache. The MVME141-1 board is paired with a Motorola MVME244-2 8Mb
DRAM memory module board in a Motorola MVME945 VMEbus chassis.

Compiler: Verdix Ada Development System (VADS) VAX VMS to MC68020/30,
Version 6.0.5(f), with kernel modified by BSY-2 contractor General Electric.

Observation 1: AES Task Rendezvous Tests.

AES Test Results-

Configuration 1, DIY_AES Version 2.0, output from selected group K and L tests (TK02, TK03, TL02-
TL8, and TL12-TL1 7).

Note: In the heading below, MASCc r (Modular Aoproach to System Construction, Operation, and Test)
refers to a software design method than has been mar1ated by the UK Ministry of Defence since 1981.

CMU/SEI-92-TR-32 169

K. Group K - MASCOT Tasking Tests

K.2. TK02

This test determines the cpu time taken to execute a
simple rendezvous.

A benchmark was used to execute a simple rendezvous w:t. a
single scalar parameter. (A simple rendezvous is one wnere
an accept statement accepts a normal entry ca:.) . The cpu
time was measured when the caller was blocked flrst a-c
when the accepting task was blocked first (th~s relies co
pragma PRIORITY being effective).

Caller blocked first 300us
Accepting task blocked first: 287us

K.3. TK03

This test determines the cpu time taken to execute a
simple rendezvous with guarded alternatives.

A benchmark was used to execute a simple rendezvous with a
singlp scalar parameter. (A simple rendezvous is one where
an accept statement accepts a normal entry call). The
rendezvous is one where the called task has a selective
wait with two guarded alternatives. The cpu time was
measured when the caller was blocked first and when the
accepting task was blocked first (this relies or pragma
PRIORITY being effective).

Caller blocked first 338us
ýccepting task blocked first 344us

L. Group L - General Tasking Tests

L.2. TLO2

This benchmark test determines the effect of idle tasks
on performance. Tesks performing computations and Iile
tasks (i.e. tasks simply awaiting rendezvous) are used
and the test executed several times, increasing the
number of idle tasks each time. The percentage
deterioration per idle task in system performance (as
compared with no idle tasks being present) is examined.

+------- --------------

Number of Deterioration
idle tasks per idle task I

------- ----- 4 --------

1 0%
5 0%

10 0%

20 0%

10M-------- ---------

170 CMUWSEI-92-TR-32

L.3. TL03

This bench:a..k test determines the effect of select
alternatives on performance.

This test measures the cpu time taken to select the first
alternative in a select statement containing two select
alternatives and also compares the cpu time taken in

selecting the first select alternative with the cpu time
taken in selecting the last select alternative in a
select statement containing 20 alternatives.

-------------------.+ --------.

I Number of I Selection I Cpu
I Selections I i Time
+...--..-------.------+- -.---.

1 2 1 First I 342us I

1 20 I First I 418us
I 20 i Last I 441us

...........---------- ---------

L.4. TL04

This benchmark test examines the effect on performance of
guards on entry statements.

The test measures the cpu time taken to select the first
alternative in a select statement containing two select
alternatives when simple boolean guards are present and
also compares the cpu time taken in selecting the first
select alternative with the time taken in selecting the
last select alternative in a select statement containing
20 alternatives when simple boolean guards are present.

------------- ...-----4-----.-----...

I Number of I Selection I Cpu I
I Selections I I Time I

+-...--....------ .---- +.----. .+

I 2 1 First I 345us I
I 20 1 First I 414us I
I 20 1 Last I 454us I
+...-------------+... . ..-----------.

L.5. TLOS

This benchmark test examines the effect on performance of
passing parameters in rendezvous. The test compares the
cpu time taken for rendezvous with no parameters with
that for passing parameters. Various sized integer arrays
are used as parameters and average timings taken.

CMU/SEI-92-TR-32 171

I Number of I Mode I Cpu I
I Array Elements Time I

0 I 174usI
25 in I 285us
25 in out I 285us

100 1 in I 285us
100 1 in out 285us I

1000 in I 285us I
1 1000 in out I 285us I
1 2000 in I 285us
1 2000 1 in out 285us
4------------------+-----------4-------------4

L.6. TL06

This benchmark test determines the effect of multiple
entry clauses on performance.

This test compares the efficiency of usiig many small
tasks with single entry clauses against many large tasks
containing multiple entry clauses. 20 tasks/entry
statements are used. For the large task, efficiency of

selecting alternatives in reverse order is also compared

with that for making the selection in a straight order.

20 tasks with single 289us per rendezvous

entry clauses

Multiple entry clause

(in order) 426us per rendezvous
(In reverse order) 425us per rendezvous

L.7. TLO7

This benchmark test examines the effect of ordering on
entry clauses in a select statement.

This test compares the average cpu time taken to call a
select alternative when the alternatives are called in
order, with that to call a select alternative when the
alternatives a-e called in reverse order, for 10
alternatives.

In order : 382us per rendezvous
In reverse order : 382us per rendezvous

L.8. TLO8

This benchmark test determines the fairness of selective
wait statements.

A check is made that a task does not execute the else
alternative of a selective wait statement more than a
small number of times before a reschedule is forced.
Tasks of equal priority are used for the test.

The tasks were not given a fair distribution of time.

Note that the results of this test cannot be relied on if
pragma PRIORITY is not completely effective.

172 CMU/SEI-92-TR-32

L.12. TL12

This test determines the rules for selecting open accept
alternatives in the event that more than one can be
chosen. If several rendezvous are possible and several
accept alternatives can be selected, one is selected
arbitrarily, [LRM 9.7.1 (6)1.

The main task contained three open accept alternatives,
three server tasks were also provided which looped
indefinitely providing rendezvous opportunities with a
given accept alternative. The test ascertained that, in
50 rendezvous, each accept alternative was used in
sequence, the order being accept alternative 3, accept
alternative 2 and accept alternative 1.

L.13. TLl3

This test determines the rules for selecting open delay
alternatives in the event that more than one can be
chosen. An open delay alternative will be selected if no
accept alternatives can be selected before the given
delay has elapsed and that, if several delay alternatives
can be selected, one is selected arbitrarily, [LRM 9.7.1
(8)].

The main task contained three open delay alternatives,
each having a value of 20ms. No server tasks were
provided and so there were no opportunities for
rendezvous. The test ascertained that, in 50 attempted
rendezvous, the same delay alternative was selected. This
was delay alternative number 3.

L.15. TL15

This benchmark test examines the effect on performance of
passing various numbers of parameters in rendezvous. The
test compares the cpu time taken for rendezvous with no
parameters with that for passing parameters. Various
numbers of integer parameters are passed at rendezvous,
the average timings being taken.

+----------------------.+

I Number of Cpu II Parameters I Time I

+----- --.. .+.---+

1 0 1 174us I
S1 28lus I

I 10 1 289us I
I 100 I 390us I

+-.........-----..----...

L.16. TL16

This test determines the overheads of conditional entry
calls which are not accepted, and selective waits which
are not called.

For the conditional entry call test, there are two tasks.
One makes repeated conditional entry calls, the other

CMU/SEI-92-TR-32 173

contains an accept for the entry which is never executed.
The rendezvous is timed. The test ascertained that a
conditional entry call takes 41.Sus.

For the selective wait test, there are two tasks. One
executes repeated selective waits, the other contains a
call to the selective wait entry which is never executed.

The rendezvous is timed. The test ascertained that a

selective wait takes 55.3us.

L.17. TL17

This test determines the overheads of using entry
families. Entry families define a "family" of entries,
each entry beinq distinguished by a different discrete
value.

Timings are performed for 5 ordinary entries, for an
entry family with 5 discrete values, for 10 ordinary
entries, and for an entry family with 10 discrete values.

The test used two tasks performing rendezvous with either
calls to ordinary entries, or to entry families.

The following results were obtained:

------------ +------

I Rendezvous I Cpu I
I I Time I
+-----------+------

1 5 ordinary I 1.74ms I
I 5 family 1 1.88ms I

1 10 ordinary I 3.76ms I
I 10 family I 4.00ms I

+ ----- +---+

Observation 2: ACEC Task Rendezvous Tests.

ACEC Test Results:

Configuration 1, ACEC Release 2.0, raw cutput from selected tests:

"* task3 * task4 * task23 0 task24 * task26
"* task30 * task3l * task4l 0 task42 0 task43
"* task47 0 tasknum_1 e task.num_5 • tasknum_10 * task num_15
"• task_num_20 * task_num_25 • task_num_30 0 task2_num_¶ * task2_num_5
"* task2_num_15 * task2_num_20 9 task2_num_25 e task2_num30

The ACEC contains a great many tasking tests, and many of these tests measure rendezvous perfor-
mance. To limit the scope of this observation, not all of the task rendezvous test results are reported
here, All ACEC tasking results reported here come from the Ancillary Data section of the report gener-
ated by the Single System Analysis (SSA) tool. This section of the SSA report does not provide sum-
mary descriptions of tests and does not group test results into various categories (e.g., rendezvous with
no passed parameters, rendezvous with N passed parameters). An attempt has been made to alleviate

the prob!em for a subset of test results in this observation.

Simple Rendezvous: The results below are all from tests in which no parameters are passed in the ren-
dezvous. Except for the last two tests listed, the calling and called tasks have different priorities as-

174 CMU/SEI-92-TR-32

signed so that one or the other can be made to arrive at the rendezvous point first. The called task has

the following structure:

TASK BODY resource IS
BEGIN

LOOP
ACCEPT request;
ACCEPT release;

END LOOP;
END resource;

The following is a summary description of the tests in this group:

TASK3: caller arrives first, both tasks in same compilation unit

TASK23: callee arrives first, both tasks in same compilation unit

TASK24: caller arrives first, callee in subunit

TASK26: caller arrives first, callee in separate package

TASK41: callee arrives first, callee in separate package

TASK42: equal priority tasks, callee in separate package

TASK43: equal priority tasks, both in same compilation unit

Because the tasks in each of the last two tests above were of equal priority, it was possible for the com-
piler to execute them in an order that saved 1/4 of the task switches as compared with the execution

order of the tasks in the preceding tests.

task3 time per rendezvous - 251.8
..... i.. per.e.de vous-234.......... 6......................................
task23 time per rendezvous - 234.6

task26 time per rendezvous = 251.8

task24 time per rendezvous - 252.0

task41 time per rendezvous - 251.8

------ t r 1..................3........ . 5..................................
task43 time per rendezvous - 1723.

task43 time per rendezvous - 172.0

Selective wait with delay alternative: In the first test below, the called task has a select statement with
a delay alternative that is not taken because the called task is ready to rendezvous with the calling task.
The idea is that it should not be necessary for the delay to be set up and then cancelled. In the second

test, the delay alternative is actually taken and then cancelled immediately when the calling task initiates

the rendezvous.

CMU/SEI-92-TR-32 175

task30 time per rendezvous - 685.5

task31 time per rendezvous - 761.6

Bounded Buffer: In each of the following tests, elements are written to and read from a 10-element buff-
er. The buffer is in a task and reads and writes are performed by calling the appropriate entry. The ele-
ments are non-scalar in the first test (10-character strings) and scalar in the second test (single

characters).

task4 Time per rendezvous - 361.9

task47 Time per rendezvous - 348.8

The rendezvous times shown above were determined by dividing the elapsed time of a sequence of two
reads and two writes by four. The same bounded-buffer tests were also featured in the main SSA report,
where the elapsed time was reported. The SSA resuls are shown below.

Runtime System Behavior

Tasking-bounded Buffer With Scalar/nonscalar Parameter

Test Execution Bar Similar
Name Time Chart Groups

task47 1395.40 * I
task4 1447.40 *********************W*********** I

Individual Test Descriptions

On many systems, the time to process parameters in a rendezvous is a
small fraction of the time to perform the rendezvous proper.

SUBTYPE image IS String (1 .. 10
xl ; image "abcdefghij"
x2 : image "0123456789"1
y : image

task4 -- Bounded buffer with nonscalar parameter
buffer.write C xl)
buffer.write (x2) ;
buffer.read (y
buffer.read (y)

SUBTYPE image IS character RANGE 'A' .. 'Z';
xl image 'B' ;
x2 image :'Y' ;
y image
.-- -- - -. .. .

task47 -- Bounded buffer with scalar parameter
buffer.write (xl ;
buffer.write { x2) ;
buffer.read (y)

buffer.read (y ;

176 CMU/SEI-92-TR-32

Variable number of called tasks: Each test below (task num _1, task-num-3, etc.) has a single calling
task and many equal-priority called tasks; the actual number of called tasks is indicated in the test name.
Each called task is of the form shown above for the simple rendezvous test group. The calling task
makes a sequence of pairs of entry calls of the form

l. request;
ti .release;

t2 .request;
t2 .release;

And so on, for each called task in the test. The idea is to see if rendezvous performance is affected by
the number of tasks.

t a s k ----nu m _ 1- ---ti m e- --pe r- --re n d e z v o u s- -- ---- --25 1 .9- -

task num 5 time per rendezvous = 202.5

task-nurn_5 time per rendezvous - 197.8

task----num_20 ----time----per---rendezvous------199.2--

task_nuzn_25 time per rendezvous - 199.5

task-num_30 time per rendezvous 2019.8

task2_num 10 time per rendezvous - 234.1

task2_num_5 time per rendezvous 223.5 ------------------

task2_nurn_10 time per rendezvous = 128.5

task2_num_15 time per rendezvous = 231.4 -----------------

task2_num_20 time per rendezvous - 235.6

task2_num_30 time per rendezvous - 2343.2

CM ! E -9- T--- - - - --2- - - - -- - - - - -177-- - -- - - - - -- - - - - -

Observation 3: PIWG Task Rendezvous Tests.

PIWG Test Resufts:

Configuration 1, PIWG 12/12/87 Release, Tests T000001 through T000008.

Test Name: T030001 Class Name: Tasking
CPU Time: 275.6 microseconds
Wall Time: 275.6 microseconds. Iteration Count: 64
Test Description:

Minimum rendezvous, entry call and return time
1 task 1 entry , task inside procedure
no select

Test Name: T000002 Class Name: Tasking
CPU Time: 215.6 microseconds
Wall Time: 275.6 microseconds. Iteration Count: 64
Test Description:
Task entry call and return time measured
One task active, one entry in task, task in a package
no select statement

Test Name: T000002 Class Name: Tasking
CPU Time: 278.3 microseconds
Wall Time: 278.3 microseconds. Iteration Count: 32
Test Description:

Task entry call and return time measured
Two tasks active, one entry per task, tasks in a package
no select statement

Test Name: T000004 Class Name: Tasking
CPU Time: 330.6 microseconds
Wall Time: 330.6 microseconds. Iteration Count: 16
Test Description:
Task entry call and return time measured
One tasks active, two entries, tasks in a package
using select statement

Test Name: T000005 Class Name: Tasking
CPU Time: 279.0 microsecoris
Wall Time: 278.8 microseconds. Iteration Count: 4
Test Description:

Task entry call and return time measured
Ten tasks active, one entry pez task, tasks in a package
no select statement

Test Name: T000006 Class Name: Tasking
CPU Time: 401.0 microseconds
Wall Time: 400.8 microseconds. Iteration Count: 4
Test Description:

Task entry call and return time measurement
One task with ten entries , task in a pack: e

178 CMU/SEI-92-TR-32

one select statement, compare to T000005

Test Name: T000007 Class Name: Tasking

CPU Time: 171.9 microseconds
Wall Time: 171.7 microseconds. Iteration Count: 64
Test Description:

Minimum rendezvous, entry call and return time
1 task 1 entry
no select

Test Name: TO00008 Class Name: Tasking
CPU Time: 609.4 microseconds
Wall Time: 609.4 microseconds. Iteration Count: 32
Test Description:

Measure the average time to pass an integer
from a producer task through a buffer task
to a consumer task

The Verdix compiler provides a "PASSIVE" pragma that enables certain kinds of tasks to be optimized
for runtime performance. For comparison, the results of modified PIWG T tests are shown below. The
T tests were modified by inserting a "pragma PASSIVE" in the specification of each task. The VADS
documentation states that this pragma is not allowed in all cases; for example, tests T000001 and
T000007 generated a compile-time warning of the form:

20: task Ti is
21: entry El
22: pragma PASSIVE;

A -------

A:warning: Appendix F: PASSIVE only allowed for a task declared in a
library package

23: end T1 ;

For this reason, the pragma was only put in the specification of the BUFFERTYPE task type in test
T000008.

Test Name: T000001 Class Name: Tasking
CPU Time: 275.6 microseconds
Wall Time: 275.8 microseconds. Iteration Count: 64
Test Description:

Minimum rendezvous, entry call and return time
1 task 1 entry , task inside procedure
no select

Test Name: T000002 Class Name: Tasking
CPU Tin-: 36.3 microseconds
Wall Time: 36.3 microseconds. Iteration Count: 256
Test Description:

Task entry call and return time measured
One task active, one entry in task, task in a package
no select statement

CMU/SEI-92-TR-32 179

Test Name: T000003 Class Name: Tasking
CPU Time: 37.9 microseconds
Wall Time: 37.9 microseconds. Iteration Count: 128
Test Description:

Task entry call and return time measured
Two tasks active, one entry per task, tasks in a package
no select statement

Test Name: T000004 Class Name: Tasking
CPU Time: 40.3 microseconds
Wall Time: 40.2 microseconds. Iteration Count: 129
Test Description:

Task entry call and return time measured
One tasks active, two entries, tasks in a package
using select statement

Test Name: T000005 Class Name: Tasking
CPU Time: 35.5 microseconds
Wall Time: 35.5 microseconds. Iteration Count: 32
Test Description:

Task entry call and return time measured
Ten tasks active, one entry per task, tasks in a package
no select statement

Test Name: T000006 Class Name: Tasking
CPU Time: 53.4 microseconds
Wall Time: 53.4 microseconds. Iteration Count: 32
Test Description:

Task entry call and return time measurement
One task with ten entries , task in a package
one select statement, compare to T000005

Test Name: T000007 Class Name: Tasking
CPU Time: 171.9 microseconds
Wall Time: 172.0 microseconds. Iteration Count: 64
Test Description:
Minimum rendezvous, entry call and return time
task I entry
no select

Test Name: T000008 Class Name: Tasking
CPU Time: 151.7 microseconds
Wall Time: 151.7 microseconds. Iteration Count: 128
Test Description:
Measure the average time to pass an integer
from a producer task through a buffer task
to a consumer task

References

0 none

180 CMU/SEI-92-TR-32

Appendix A BSY-2 Performance Questions
This appendix describes how the performance questions addressed in this report were selected. There
are two primary sources for questions (in order of examination):

1. The BSY-2 SSP Style Guide

2. SEI experience

The Style Guide was examined first and a list of questions was generated from it. A supplementary list
of questions was then prepared to cover additional topics based on the experiences of the authors and
reviewers within the SEI.

The question lists were developed to be inclusive, particularly in analyzing the Style Guide. Only trivial
questions were edited from these preliminary lists.

Each cquestion was designed to quantify the performance of alternate programming constructs which a
programmer or system designer might reasonably select to implement a program or system. In general
these are choices between alternate Ada constructs.

The lists were then merged and the most significant items were selocted for further examination. In pre-
paring the merged list the REST Project staff considered two primary criteria:

"* The potential performance payoff between alternatives.

"• The availability of performance tests and data to answer the questions.
The question list was then reviewed within the SEI for relevance and completeness.

A.1 Questions from the SSP Ada Style Guide
The Software Standards and Procedures Manual (SSP) for the AN/BSY-2 contains an Ada Style Guide
which will control the format for coding Ada software. The style guide emphasizes readability, consis-
tency and maintainability. It therefore specifies how variables and Ada statements are to be construct-
ed, module size, format of statements and specifies usage rules for a number of language features. The
Ada Style Guide does not specifically discuss execution efficiency for these constructs.

The SSP Ada Style Guide was reviewed, and any recommendations which represented choices con-
taining possible performance trade offs were isolated and the relevant performance questions were for-
mulated. These questions are the primary basis for this report. The list included here is the complete
list derived from the Style Guide. It was subsequently edited and the questions collated into the final list.

A.1.1 Performance Issues Relating to the Ada Style Guide
The Ada Style Guide is relatively brief and does not specifically address Ada performance issues. How-
ever, some performance questions are relevant to specific rules laid down by the Style Guide:

1. Sections 10.3.4 and 10.3.5.7 specify the use of digits N rather than using the pre-
defined types SHORTFLOAT, FLOAT, and LONGFLOAT.

1.1. Does performance differ if predefined types are used?

CMU/SEI-92-TR-32 181

1.2. How does the compiler select the underlying representations when numeric
representations are set by the user?

1.3. What is the relationship between requested accuracy and performance? Is
the relationship a smooth curve or discontinuous?

2. Section 10.3.5.1 specifies the use of enumeration types for clarity rather than code
values or strings.

2.1. What are the performance characteristics of enumerated types versus data
representations using strings, characters and integers?

3. Section 10.3.5.5.b specifies that the attributes 'RANGE or 'FIRST and 'LAST are
to be used in preference to constant values in setting bounds and ranges for loops
and similar constructs.

3.1. What are the performance trade offs between ranges provided by attributes
and by constant values?

4. Section 10.3.5.11 forbids the use of anonymous types to define arrays.

4.1. Is the performance of arrays using anonymous types different from typed ar-
rays?

5. Section 10.4.3.2.b specifies that array aggregates should be used in place of
explicit loops "wherever applicable."

5.1. What are the performance characteristics of array aggregates and corre-
sponding loops?

6. Section 10.5.4.a states that a case statement should be used "when a selection is
based on the value of a single variable or expression of a discrete type other than
Boolean."

6.1. What are the performance trade offs between the case statement and other
logical selectors?

6.2. Does the performance of logical selectors vary with number of selection al-
ternatives?

7. Section 10.7.3.a specifies that a subroutine should normally contain 100 or fewer
executable lines, and never more than 200.

7.1. Does the extra call overhead meaningfully increase the execution time of pro-
grams divided into smaller modules compared to a monolithic design?

7.2. Is pragma INLINE effective?

8. Section 10.6.3.e specifies that pragma INLINE should only be used for procedures
and functions that are internal to the body of a package, task, procedure or
function.

8.1. How does the use of pragma INLINE affect runtime performance?

9. Section 10.9.2.a specifies that task types should be used instead of multiple task
definitions performing the same function.

9.1. What are the comparative performance values for task types versus multiple
task definitions?

182 CMU/SEI-92-TR-32

10. Section 10.9.6.b specifies that all programs using time should use the
CALENDAR.TIME type or DURATION type except when "more precision" is
needed.

10.1. What is the accuracy of types CALENDAR.TIME and DURATION?

10.2. What accuracy can be expected using alternate time formats?

10.3. What is the performance of alternative time formats?

11. Section 10.9.8.e allows tasks to be declared without any priority. Section 10.9.8
does not state if tasks with and without priority may be mixed.

11.1. What is the default priority of a task?

11.2. Does the behavior of a task with a default priority vary at all from an equiva-
lent task with an explicit priority?

11.3. What happens when tasks with and without priority are mixed in a single pro-
gram?

12. Section 10.9.11 forbids the use of pragma SHARED.

12.1. What is the efficiency of shared variables specified by pragma SHARED?

13. Section 10.11.7.a specifies that runtime checks will not be suppressed unless
suppression is required to achieve acceptable program efficiency.

13.1. How is performance changed by suppressing runtime checks?

13.2. What optimizations does the compiler perform for runtime checking?

13.3. How is performance affected by suppressing individual runtime checks?

13.4. Does simulating selected runtime checks by explicit cnimparisons offer any
performance advantage?

14. Section 10.12 describes the use of generic units.

14.1. What is the comparative performance of generic and nongeneric units?

15. Section 10.1 2.2.a specifies that a generic subroutine should normally contain 100
or fewer executable lines, and never more than 200.

15.1. Does the extra call overhead meaningfully increase the execution time of pro-
grams divided into smaller generic modules corrmpared to a monolithic de-
sign?

15.2. Is pragma INLINE effective for generic routines?

A.2 SEI Additional Questions

The SEI supplemented the list of questions from the SSP Style Guide with some additional questions.
These are generally intended to augment the recommendations from the style guide or to explore is-
sues that the style guide does not cover.

CMU/SE 1-92-TR-32 183

A.2.1 SEI Questions
1. Compiler Optimizations

1.1. What are the effects of different levels of optimization?

1.2. What specific optimizations are performed? (Relate to optimization levels if
possible.)

1.3. Does optimization minimize or eliminate unnecessary runtime checking?

2. Device Interfacing

2.1. Can an access type be used to map a data structure to a real device ad-
dress?

2.2. Can a record representation clause be used to specify the structure of device
registers?

2.3. Can unchecked type conversion (via generic function UNCHECKED_CON-
VERSION) be used to generate real device addresses from integer represen-
tations of such addresses?

2.4. Is package LOW-LEVEL_10 implemented? Is it a viable alternative to using
address clauses, record representation clauses, and unchecked type con-
version?

2.5. Is interfacing to other languages (in particular, assembler language) support-
ed? Is the performance different from the all-Ada approach?

2.6. How are interrupts handled?

2.6.1. Can an address clause be used to map an interrupt entry to a real
interrupt vector?

2.6.2. What is the interrupt latency for handlers written in Ada?

2.6.3. Can interrupt handlers written as Ada tasks be optimized to provide
performance comparable with that of other types of handlers?

2.6.4. At what priority level does the interrupt entry execute?

2.6.5. At what priority level does the task body outside the interrupt entry
execute?

3. Exception Handling

3.1. Does the presence of an exception handler affect runtime performance?

3.2. What is the runtime cost of raising and propagating an exception?

4. Loop Control

4.1. Do different loop constructs vary in efficiency?

5. Numeric Operations.

5.1. What is the performance impact of using double-precision versus single pre-
cision arithmetic?

184 CMU/SEI-92-TR-32

5.2. Is there a performance difference between predefined numeric types and

user-defined numeric types?

5.3. Is the math library efficient?

6. Pragmas

6.1. What pragmas are supported?

6.2. How does pragma ELABORATE affect the performance of a program?

6.3. Does inlining of subprograms via pragma INLINE improve performance? By
how much?

7. Program Structure

7.1. What are the performance characteristics of subprograms?

7.1.1. What is the overhead of calling subprograms with various numbers/-
modes/types of parameters?

7.2. What are the performance characteristics of generic objects? How do they
compare with the equivalent non-generic objects?

7.3. How does the locality of data and procedures affect performance?

7.3.1. What is the performance effect of declaring data locally, within the
package, in other packages, in library units?

7.3.2. What is the overhead of calling subprograms that are in the same
unit, in different units, in different packages?

7.3.3. What effMct does the use of private and limited private types have on
performance?

7.3.4. What is the overhead of calling subprograms that are in subunits
(i.e., separately compiled)?

8. Representation of Data

8.1. What are the performance and memory size consequences of using repre-
sentation attributes to vary numeric characteristics?

8.2. What are the performance and memory size consequences of using repre-
sentation attributes for selected data types (e.g., arrays, records, strings)?

8.3. Are there performance and memory size differences between private and
public data types?

9. Runtime Checking

9.1. Does runtime checking impose a significant performance overhead?

9.2. What is the performance of UNCHECKEDCONVERSION versus explicit
type conversion?

10. Tasking

10.1. What are the performance characteristics of a tasking program?

CMU/SEI-92-TR-32 185

10.1.1. Does the presence or absence of an explicitly-del ined priority affect

a task's performance?

10.1.2. How long does it take to create/terminate a task?

10.1.3. Is there a difference in the performance of dynamically-created and
statically-created tasks?

10.1.4. Does the presence of an exception handler in a task affect that task's
performance?

10.2. What are the performance characteristics of task rendezvous?

10.2.1. How is rendezvous performance affected by the number of tasks?

10.2.2. how is rendezvous performance affected by the number of entries in
the task(s)?

10.2.3. How is rendezvous performance affected by the presence of guards
in the rendezvous?

10.3. What are the characteristics of task set scheduling?

10.3.1. What algorithm(s) is(are) used to schedule a task set?

10.3.1.1. What algorithm is used to schedule a task set with
explicitly defined priorities?

10.3.1.2. What algorithm is used to schedule a task set without
explicitly defined priorities?

10.3.1.3. What algorithm is used to schedule a task set with a
mixture of explicitly defined priorities and undefined
priorities?

10.3.2. Is the runtime system preemptive and priority-based?

10.3.3. Is blocking minimized?

10.3.4. Is priority inversion avoided?

10.3.5. Is I/O interleaved with task execution or is it a blocking effect?

11. Time Management

11.1. What is the resolution of CALENDAR.CLOCK?

11.2. What is the resolution of the delay statement?

11.3. What is the resolution of the type DURATION (DURATION'SMALL)?

11.4. What is the overhead of reading CALENDAR.CLOCK?

11.5. What is the overhead of performing calculations with types TIME and DURA-
TION?

11.6. Is CALENDAR.CLOCK subject to drift or jitter? If so, how much?

186 CMU/SEI-92-TR-32

A.3 Combined Questions List

Performance questions from all sources were combined into a single list, organized by subject. Individ-
ual questions from this list are then addressed in the body of the report.

Note: SSP indicates a question from the BSY-2 SSP Style Guide; SEI
indicates a question provided by the authors.

A.3.1 Merged List of Questions
1. Tasking

1.1. Task Priority

1.1.1. What is the default priority of a task? [SSP 11.11

1.1.1.1. A master task (the task created for the main program)?

1.1.1.2. A library task (a task created in a library unit)?

1.1.1.3. "Vanilla" tasks (tasks created within a program either by
declaration or dynamically)?

1.2. Task Set Scheduling

1.2.1. Algorithm(s)

1.2.1.1. What algorithm is used to schedule a task set with
explicitly defined priorities? [SSP 11.2 and SEI 10.3.1.1]

1.2.1.2. What algorithm is used to schedule a task set without
explicitly defined priorities? tSSP 11.2 and SEI 10.3.1.21

1.2.1.3. What algorithm is used to schedule a task set with a
mixture of explicitly defined priorities and undefined
priorities? [SSP 11.3 and SEI 10.3.1.3]

1.2.2. Is the runtime system preemptive and priority-based? [SEI 10.3.2]

1.2.3. Is blocking minimized? [SEI 10.3.3]

1.2.4. Is priority inversion avoided? [SEI 10.3.4]

1.2.5. Is I/O interleaved with task execution or is it a blocking effect? [SEI
10.3.5]

1.3. Task Performance

1.3.1. What are the comparative performance values for task types versus
multiple task definitions? [SSP 9.1 and SEI 10.1.3]

1.3.2. Does the presence or absence of an explicitly-defined priority affect
a task's performance? [SEI 10.1.1]

1.3.3. How long does it take to create/terminate a task? [SEI 10.1.2]

CMU/SEI-92-TR-32 187

1.3.4. Does the presence of an exception handler in a task affect that task's

performance? [SEI 10.1.41

1.4. Rendezvous

1.4.1. How is rendezvous performance affected by the number of tasks?
[SEI 10.2.1]

1.4.2. How is rendezvous performance affected by the number of entries in
the task(s)? [SEI 10.2.2]

1.4.3. How is rendezvous performance affected by the presence of guards
in the rendezvous? [SEI 10.2.31

2. Compiler Optimizations

2.1. What are the effects of different levels of optimization? [SEI 1.1]

2.2. What specific optimizations are performed? (Relate to optimization levels if
possible.) [SEI 1.2]

2.3. r)oes optimization minimize or eliminate unnecessary runtime checking?
[SEI 1.3]

3. Loop Control

3.1 Do different loop constructs vary in efficiency? [SEI 4.1]

3.2. What are the performance trade off s between loop limits set by constants and
by attributes (e.g., 'FIRST, 'LAST, or 'RANGE)? [SSP 3.11

4. Logical Testing

4.1. What are the performance trade offs between the case statement and other
logical tests? [SSP 6.1]

4.2. Does the performance of logical selectors vary with the number of selection
alternatives? [SSP 6.21

5. Data Representation

5.1. Predefined Types

5.1.1. Is there a difference in performance between predefined and user
defined types? [SSP 1.1]

5.1.2. Time

5.1.2.1. What is the accuracy of types CALENDAR.TIME and
DURATION? [SSP 10.1 and SEI 11.3]

5.1.2.2. What accuracy can be expected using alternate time
formats? [SSP 10.2]

5.1.2.3. What is the performance of alternative time formats?
[SSP 10.3]

5.2. User Defined Types

188 CMU/SEI-92 TR-32

5.2.1. Numeric Types

5.2.1.1. Is there a performance difference between predefined
numeric types and user-defined numeric types? [SEI 5.2]

5.2.1.2. How are underlying types selected for number
representations? [SSP 1.2]

5.2.1.3. What is the relationship between requested accuracy
and performance? Is the relationship a smooth one or
discontinuous? [SSP 1.3]

5.2.1.4. What is the performance impact of using double-
precision versus single precision arithmetic? [SE1 5.11

5.2.1.5. Is the math library efficient? [SEI 5.3]

5.2.2. Enumeration Types

5.2.2.1. How does the performance of enumeration types
compare with that of equivalent representations using
strings or code values? [SSP 2.1]

5.2.3. Private Types

5.2.3.1. Are there performance and memory size differences
between private and public data types? [SEI 8.31

5.3. Arrays

5.3.1. Definitions

5.3.1.1. Is the comparative performance of arrays different when
they are defined anonymous types and named types?
[SSP 4.11

5.3.2. Assignment

5.3.2.1. What are the performance characteristici of array
aggregates and corresponding loops? [SSP 5.11

5.4. Representation of Data

5.4.1. What are the performance and memory size consequences of using
representation attributes to vary numeric characteristics? [SEI 8.1]

5.4.2. What are the performance and memory size consequences of using
representation attributes for selected data types (e.g., arrays,
records, strings)? [SEI 8.2]

5.5. Type Conversion

5.5.1. What is the performance of UNCHECKEDCONVERSION versus

explicit type conversion? [SEI 9.2]

CMU/SEI-92-TR-32 189

6. Generics

6.1. What is the comparative performance of generic and nongeneric units?
[SSP 14.11

6.2. Does the extra call overhead meaningfully increase the execution time of pro-
grams divided into smaller generic modules compared to a monolithic de-
sign? [SSP 15.11

7. Program Structure

7.1. Subprograms

7.1.1. Does the call overhead meaningfully increase the execution time of
programs divided into smaller modules compared to a monolithic de-
sign? [SSP 7.1]

7.1.2. What is the overhead of calling subprograms with various numbers/-
modes/types of parameters? [SEI 7.1.1]

7.2. What are the performance characteristics of generic objects? How do they

'ýompare with the equivalent non-generic objects? (SEI 7.2]

7.3. Locality of data and procedures

7.3.1. What is the performance effect of declaring data locally, within the
package, in other packages, in library units? [SEI 7.3.1]

7.3.2. What is the overhead of calling subprograms that are in the same
unit, in different units, in different packages? [SEI 7.3.2]

7.3.3. What effect does the use of private and limited private types have on
performance? [SEI 7.3-31

7.3.4. What is the overhead of calling subprograms that are in subunits
(i.e., separately compiled)? [SEI 7.3.4]

8. Pragmas

8.1. What pragmas are supported? [SEI 6.1]

8.2. pragma ELABORATE

8.2.1. How does pragma ELABORATE affect the performance of a pro-
gram? [SEI 6.2]

8.3. pragma INLINE

8.3.1. Is pragma INLINE effective? JSSP 7.2 and SEI 6.3]

8.3.2. What is the runtime performance effect of pragma INLINE? [SSP 8.1
and SEI 6.3]

8.3.3. Is pragma INLINE effective for generic routines? [SSP 15.2]

190 CMU/SEI-92-TR-32

8.4. pragma SHARED

8.4.1. What is the efficiency of shared variables specified by pragma
SHARED? [SSP 12.1]

8.5. pragma SUPPRESS

8.5.1. How is performance changed by suppressing all constraint checks?
[SSP 13.1 and SEI 9.1]

8.5.2. How is performance changed by suppressing individual constraint
checks? [SSP 13.3 and SEI 9.1]

8.5.3. Does simulating constraint checks by explicit comparison offer any
performance advantage? [SSP 13.4 and SEI 9.11

8.5.4. What optimizations does the compiler perform for constraint check-

ing? ISSP 13.2]

9. Device Interfacing

9.1. Can an access type be used to map a data structure to a real device ad-
dress? [SEI 2.1]

9.2. Can a record representation clause be used to specify the structure of device
registers? [SEI 2.2]

9.3. Can unchecked type conversion (via generic function UNCHECKED CON-
VERSION) be used to generate real device addresses from integral repre-
sentations of such addresses? [SEI 2.3]

9.4. Is package LOWLEVEL_10 implemented? Is it a viable alternative to using
address clauses, record representation clauses, and unchecked type con-
version? [SEI 2.41

9.5. Is interfacing to other languages (in particular, assembler language) support-

ed? Is the performance different from the all-Ada approach? [SEI 2.5]

9.6. Interrupts

9.6.1. Can an address clause be used to map an interrupt entry to a real
interrupt vector? [SEt 2.6.11

9.6.2. What is the interrupt latency for handlers written in Ada? [SEI 2.6.2]

9.6.3. Can interrupt handlers written as Ada tasks be optimized to provide
performance comparable with that of other types of handlers?
[SEI 2.6.3]

9.6.4. At what priority level does the interrupt entry execute? [SEI 2.6.4]

9.6.5. At what priority level does the task body outside the interrupt entry
execute? [SEI 2.6.5]

CMU/SEI-92-TR-32 191

10. Exception Handling

10.1. Does the presence of an exception handler affect runtime performance? ISEI
3.1]

10.2. What is the runtime cost of raising and propagating an exception? [SEI 3.2]

11. Time Management

11.1. What is the resolution of CALENDAR.CLOCK? [SEI 11. ']

11.2. What is the resolution of the delay statement? [SEI 11.2]

11.3. What is the resolution of the type DURATION (DURATION'SMALL)?
[SEI 11.3]

11.4. What is the overhead of reading CALENDAR.CLOCK? [SEI 11.4]

11.5. What is the overhead of performing calculations with types TIME and DURA-
TION? [SEI 11.5]

11.6. Is CALENDAR.CLOCK subject to drift or jitter? If so, how much? [SEI 11.6]

A.4 Editing the Questions List
The merged list of questions was edited to include questions which could be quantitatively analyzed and
which had a high explanatory value. The questions were then rewritten for additional clarity and to ex-
ploit available data.

A.4.1 Final Questions List
This list is organized alphabetically by topic.

1. Arrays: What are the performance characteristics of array aggregate assignments

and corresponding loop constructs?

2. Check Suppression: How does performance change when checks are turned off ?

3. Data Location: What is the performance effect of declaring data locally or outside
the executing scope?

4. Enumeration Types: How does the performance of operations on objects of an
enumeration type compare with the performance of an equivalent representation
using strings or numeric values?

5. Exceptions: What are the performance consequences of providing exception
handling capabilities?

6. Generic Units: What is the comparative performance of generic and non-generic
units?

7. Inlining of Procedures: What is the effect of inlining procedures and generic
procedures?

8. Logical Tests: What are the performance trade otis between the case statement
and If statement?

9. Loop Efficiency: Do different loop constructs vary in efficiency?

192 CMU/SEI-92-TR-32

10. Module Size: Is the performance of a program divided into modules different from

a monolithic design?

11. Optimization Options: What are the effects of different optimization levels?

12. Precision: What are the performance differences between single-precision and
extended-precision numeric operations?

13. Private Types: Is there a difference in performance between operations on objects
of a private type and objects of a visible type?

14. Records: What is the performance of the various methods for assigning values to
record objects

15. Rendezvous: What are the performance characteristics of the various kinds of
task rendezvous?

CMU/SEI-92-TR-32 193

194 CMU/SEI-92-TR-32

Appendix B Benchmark Sources
Information on how to obtain the source code and documentation of the benchmark suites used in this

report is presented below.

B.1 The Ada Evaluation System

The Ada Evaluation System (AES) may be obtained from the British Standards Institution at the follow-

ing address:

Software Product Services

Software Engineering Department

BSIQA
P.O. Box 375
Milton Keynes MK14 6LL

United Kingdom
Tel. 0908 220908

UUCP: sed@bsiqa.uucp

(Internet: bsiqa!sed@uunet.uu.net)

As of this writing, the current version is the DIY-MAPSE-01 version. It is available at a cost of 3000

pounds sterling. BSI also offers a validation service at a cost of 24,000 pounds sterling.

The Ada Evaluation System (AES) will be rmierged with the Ada Compiler Evaluation Capability (ACEC)

under a joint agreement between the Ministry of Defence of the United Kingdom and the Department of

Defense of the United States that was signed in June of 1991. The merged product will be released as

version 4.0 of the ACEC; as of this writing, the expected release time is the third or fourth quarter of

1993.

B.2 The Ada Compiler Evaluation Capability

The Ada Compiler Evaluation Capability (ACEC) may be obtained from

Data and Analysis Center for Software (DACS)
P.O. Box 120

Utica, NY 13503
Tel. (315) 734-3696

Internet: dacs-info@kaman.com

As of this writing, the current release of the ACEC is 3.0. There are three documents: the User's Guide,

the Reader's Guide, and the Version Description Document. The total cost for the software and docu-

mentation is 100 US dollars. (Release 3.0 of the ACEC is not the merged AES-ACEC product referred

to above.)

CMU/SEI-92-TR-32 195

B.3 The PIWG Benchmarks

The ACM Performance Issues Working Group (PIWG) benchmarks may be obtained in one of three

ways:

" Via anonymous ftp (Internet file transfer protocol) from the ajpo.sel.cmu.edu
machine. Users should issue the command "flp ajpo.sei.cmu edu" and log in using
the word "anonymous" as the login name and an identifying string (e.g., the user's e-
mail address) as password. Change directory ("cd" command) to the
"public/piwg/piwgj1 _92" directory and use the ttp file-transfer commands to
retrieve the files.

" Via the PIWG bulletin board. Ideally, users should access this from a PC (rather than
a dumb terminal) using a modem capable of sending and receiving at 1200 baud or
higher. The number of the bulletin board is (412) 268-7020. Once connected to the
bulletin board, users will be able to navigate their way around the system using
simple menus that the system provides. The point of contact for this service is Gene
Rindels, (412) 268-6728.

Via a written request or telephone request to the following service:

PIWG Distribution
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Tel. (412) 268-7787

As of this writing, the current release of the PIWG suite is the one known as the 11/92 release. There

is no charge for the PIWG benchmarks. Documentation for the PIWG benchmarks consists principally

of the READ.ME file distributed with the suite and comments in the individual test programs and com-
mand tiles. There is 3lso additional information about the PIWG suite in the Winter 1990 special edition

of Ada Letters (Vol. X, No. 3, special edition on Ada Performance Issues).

196 CMU/SEI-92-TR-32

Appendix C Question Format and Instructions
Each of the questions covered by this report is prepared using a standard format. This appendix pre-

sents that format.

C.1 Blank Question Entry

The blank question entry shows the headings used for a performance entry.

3.1

Question: ?

Summary:

Discussion:

Configuration(s) tested:

I1.

Observation 1:

Observation 2:

References

0

C.2 Instructions for Filling in Questions

Each entry in the performance and style report addresses a topic where we believe Ada programmers
or system designers will have to make choices which affect performance. The entries offer guidance on
how to program for high performance. Each entry should be designed to be read independently of all
other entries.' In addition to presenting the conclusions of the author(s), sufficient raw data should be
included to support all conclusions drawn and references provided so that the reader can repeat the
experiments, both with the tested configuration and using hardware and software variants and upgrad-
ed versions.

C.2.1 Topic
The topic serves as a title and alphabetizing key for the entry. The topic rephrases the question to put
the keywords in order of importance. For example, the question "Do different loop constructs vary in
efficiency?" is translated to the topic "Loop Efficiency". If ordering the keywcrds in order cf importance

1. However. entries should freely reference outside sources and appendices included in this report which can be
shared between entries, especially where it would be tedious to repeat the information for each entry. Related
entries should be mentioned, as a cross reference, but their contents should not be included.

CMU/SEI-92-TR-32 197

conflicts with clearly conveying the sense of the topic, the topic should be phrased for clarity, as it is
assumed that cross referencing in the subject index will make up for any "unnatural" placements. The
topic should be composed to allow readers to browse through the report and identify the interesting sec-
tions.

Question: ?

The question poses the topic for the entry. It is normally phrased to indicate the area of interest and the
coding choices which the entry will address. (Topics considered for this report will normally discuss per-
formance issues where the application developer has a choice or choices about the programming idiom.
The report tells the reader what the performance consequences of each choice is.)

An example question is "Do different loop constructs vary in efficiency?" where the programming idiom
is loop constructs (which are too numerous to enumerate in the question) and the phrase "vary in effi-
ciency" is tagged on to serve as a reminder to the reader that they will receive information on run time
efficiency. In answering the question, the author must list loop constructs, indicate which were tested,
and then draw conclusions about "efficiency".

Questions must be both short and readily comprehensible. While the question should accurately reflect
the contents of the entry, it should lean towards generality rather than being highly specialized. While
this will lead to partial answers, this is neither unexpected nor undesirable. Limits of available test data
from standard benchmark suites should be called out, and, if required, supplemented by customized
tests (or via improvement to the standard suites).

Summary:

The summary is a brief statement of the question's answer. It should state the answer by:

* Declaring whether the question could be answered--there may be cases whore
a valid and interesting topic could not be analyzed for lack of data.

* Defining the "winners" and/or the "losers" for the question, that is, which
alternative is the most efficient.

However, there may be several ways of selecting winners and losers (for exam-
ple, the fastest choice may not be the most space efficient). These qualifications
must be mentioned.

In some cases the difference may not be significant or consistent, which should
then be called out in the answer. Lengthy explanations should be reserved for lat-
er sections of the entry.

* Any significant limitations should be mentioned. For instance, if the available data
misses several alternatives, a qualification should be made. However general
caveats such as "this conclusion is based on limited data7 should not be made in
the summary.

Ideally, the summary should be a single sentence. In any case it should be limited to a short paragraph.
If additional qualification is required, it should be a forward reference to the discussion or observation
sections.

198 CMU/SEI-92-TR-32

Discussion:

The discussion section examines issues about the question and the answer for the whole of the entry.

Issues which are appropriately included in the discussion section should:

"* span the individual observations.

"* modify or amplify the conclusions which are made in the summary section.

"* suggest additional data which were either not available or which could not be
obtained.

While results from individual observations can be mentioned, this should only be done to highlight es-
pecially interesting or significant results. For instance, if it is generally true that the case statement is
faster than nested If statements, but in one special case the If statement is superior, this could appro-

priately be mentioned, but the details should continue to be included in the observation.

The discussion section should also be used to resolve inconsistencies between observations, but not
to enumerate errors which are confined to a single observation. Thus, a discussion section would ap-
propriately describe why the timings obtained from the vendor's literature in Observation #2 do not
match those obtained from benchmark testing in Observation #1. However, it the various tests within
Observation #1 disagree, this should be analyzed within the observation itself. The intra-observational
inconsistency would be mentioned in the discussion only when it was not resolved for the observation
and consequently affected conclusions (as mentioned in the preceding paragraph).

An example of when to include intra-observational inconsistencies: if, in testing loop execution speed,
an AES test concludes that a while loop is faster than a for loop and an ACEC test rates the for loop
faster, this issue is appropriately mentioned in the discussion section. However, if investigation shows
that the AES test allowed the compiler to optimize the while loop to be null, the inconsistency has been
resolved within the observation and should not be mentioned in the discussion section.

Configuration(s) tested:

1. Each configuration is assigned a number, allowing it to be conveniently referenced
(in FrameMaker, use paragraphs from the enumerate family).

The configuration(s) tested section lists the tested host and target configuration. A configuration may
have been used for one or several observations. The configuration should contain both generic descrip-
tions (e.g., "a Motorola 68020") and specific items (e.g., "a Motorola Microsystems MVME 133A-20 sin-
gle board computer") which completely characterize the hardware and software used in the test: The
configuration does not describe the test(s) performed on the configuration. The tests are described in
the observations sections.

In cases where reference material contains test results from real systems, the tested configuration
should be described in this section.

A configuration ideally contains the information listed below (it is recognized that some configurations
may be incomplete in some areas). Since there are numerous important characteristics of microproces-
sor systems, this list may be augmented by additional information where appropriate (for example, a
tested multiprocessor system might need to specify tested topology and would benefit from a synopsis

of the distributed architecture).

CMU/SEI-92-TR-32 199

"* The host used in testing

It is assumed that the host configuration will not be a major factor in testing an em-
bedded target's performance. Identification is shortened to identify the host and op-
erating system:

"* the host hardware

"* the host operating system, including version

"* any special host characteristics which have a specific bearing on the execution
environment

Example:

Host: DEC MicroVAX 3200 running VAX VMS Release 5.3-1.

" The tested target hardware

The description contains two elements: 1) a high level description, providing a gen-
eral description (e.g., a Motorola MC68020), and 2) a specific description of parts
which would allow the reader to reconstruct the test hardware, assuming parts avail-
ability.

The hardware description should be an inventory of all the independently config-
urable hardware elements that make up the tested system. The exact format of this
section depends upon number of configurable elements in the system. The elements
presented below are believed to be typical, but not exhaustive:

"• the processor type (e.g., 68020) [Generic]

"* the processor clock speed (e.g., 20 MHz) [Generic]
"* the memory cycle speed, (e.g., 60 milliseconds access time, no wait states)

[Generic]
"* a list of the type and manufacturer of the target system (e.g., a Motorola

Microsystems MVME1 41 board with an MVME 225 8 MB memory board in MMS
MVME945 VME Bus Chassis) [Specific]

• further hardware description, which characterizes the test equipment. This is
optional. When included, it should describe standard features of the target
hardware for readers unfamiliar with the specific systems under test (e.g., 8 MB
cache, pipelined processor, etc.) [Specific]

"• any configurable or optional hardware features (e.g., an optional math
coprocessor)

"* the strapping options used for the tested hardware [Specific]
"• the serial and revision numbers for the target system (often unavailable)

[Specific]

Example:

Target: Motorola MVME141-1 microcomputer: 25MHz MC68030 CPU and
25MHz MC68882 floating-point co-processor; 32Kb SRAM; 64Kb
zero-wait-state SRAM cache; 256-byte on-chip instruction cache;
256-byte on-chip data cache. The MVME141-1 board is paired

200 CMU/SEI-92-TR-32

with a Motorola MVME244-2 8Mb DRAM memory module board
in a Motorola MVME945 VMEbus chassis.

"* The tested compiler:

"* compiler manufacturer
"• version number (including version date if known)

"• compiler fixes beyond the standard release numbers
"* versions for components (where individual components are separately identified

and versioned, e.g., compiler, linker, loader...)

Example:

Compiler: Verdix Ada Development System (VADS) VAX VMS to
MC68020/30, Version 6.0.5(f), with kernel modified by BSY-2 con-
tractor General Electric.

"* The tested run time or operating system, if a separate product:

"• runtime system manufacturer
"• version number (including version date if known)
"* runtime system fixes beyond the standard release numbers
* configuration options used in the tested system. Since this often involves

describing all parameters used to generate a runtime system, this can be a
reference to an appendix.

* any special options set at run time
The test(s) run on the configuration and the options used in preparing for the test run (e.g., the compiler
options such as optimization level) are not described here, but in the following observations. It is as-
sumed that the same configuration will be used by multiple tests.

Observation 1:

Observations contain the results from a test or tests, organized around a single important idea. The ob-
servation is a detailed look at the evidence that was used to answer the question, and should present
that evidence in detail. This does not mean that all data needs to be included, but rather that the impor-
tant information is presented.

An observation normally applies only to a single configuration or is drawn from a single reference. How-
ever, this rule may be ignored when comparative information is appropriate to the explanation. The gen-
eral concept is that a single observation highlights the measurement method(s) used for a specific data
point used in answering the central question. For example, an observation might appropriately measure
and describe of the amount of memory used to support runtime checking for the topic "How does per-
formance change when all checks are turned off?" Nhile information about the time used by runtime
checking should be placed in another observation.

An observation opens with a statement of what was observed (or at least what was attempted), de-
scribes how it was observed, and discusses the meaning of the observations. The section then closes
with raw data when appropriate.

CMU/SEI-92-TR-32 201

Topics that should be addressed in an observation, in their normal order of presentation, include:

"* the object of interest that the observation describes, such as the amount of time
typical loop constructs require for execution

"* the configuration(s) where the observation applies. This should reference the
Configuration(s) tested section, and, optionally, may discuss if the observation
can reasonably be extended to other systems

"• the method(s) used to draw conclusions
"* significant observations, the test(s) they were derived from, and their interpreted

meanings
"* the limitations of method or information which restrict the conclusions. The

analyst should scrupulously draw attention to limits of the methods used and any
missing data

"* relevant raw data and options used to generate that data, in the format described
below

The writer may vary the order of presentation for greater effect, but should address all the topics.

As mentioned above, the observation closes with the raw data. This output may be from a variety of
sources, most commonly from the major Ada benchmark suites. An underlined, normal font title line
should be used to distinguish between sources. The most common are included below, but additional
entries should be made for other data sources.

Generic "Raw" Data and Source Paragraph Format

After opening the observation with the synthesis of the data, the observation section includes relevant
raw data. The data are presented in a series of subsections divided by subsection headings (underlined
text). The subsections designate the different data sources, most commonly tests from a benchmark
suite (e.g., the Ada Compiler Evaluation Capability), but sometimes reports from other workers or pub-
lished articles. Within each subsection, there will be one or more raw data elements containing one to
three parts as separate paragraphs:

* An identifier for the source of the data which would allow the user to find and repeat
the construction of the data.

This identifier includes several parts:

"* The configuration tested. This is a back reference to the ConfIguration(s) tested
section:

Configuration 1

" The test suite and version used, for example:

PIWG Ver. 12/12/87

ACEC Version 2.0

AES Version DIYAES 2.0

If the data was from published sources, the source should be cited in the refer-
ences section and briefly noted here.

202 CMU/SEI-92-TR-32

* The test or tests which generated the data (or, for some outputs the group of

MOled tests):

Test T000001 sw An individual test

SSA Loop Variations report ,w Grouped tests1

Group I, Test TI10 or Group plus test ioe

* Include any modifications or options used to prepare tests that are not default
values. For example, the default in the PIWG tests is to run tests with checking
enabled. If tests are also run with checking disabled, this should be noted.

PIWG Ver. 12/12/87, T000001 A, Checks Off, Optimization Level 8

The identifier typically occupies a single line:

Configuration 1, PIWG Ver. 12/12/87, Test T000001A.

However a multiple-line format should be adopted when a large number of individual
tests are included:

Configuration 1, ACEC Release 2.0, SSA Reports of "Language Feature Over-
head":

"Small Boolean Arrays (unpacked vs packed) =, AND, NOT"

"Small Boolean Arrays (unpacked vs packed) =, AND"

"Small Boolean Arrays (unpacked vs packed)1=, AND"

"Large Boolean Arrays (unpacked vs packed) AND" [tests ss351, ss3481.

"Large Boolean Arrays (unpacked vs packed) AND" [tests ss350, ss353].

Care should be taken to ensure that the description uniquely identifies the source of
test data.3

" (Optionally) textual information or graphical presentations. Particularly relevant
would be explanations explaining anomalies in the data (e.g., erroneous
observations, values out of expected ranges, etc.).

" (Optionally) some or all of the raw data. The output may be trimmed to eliminate
unimportant details, but should not be rewritten or interpreted within this section.
However, where results are erroneous or misleading, a note should be inserted to
that effect.

I. In this case, the individual tests are grouped and listed in the raw data output and the test names need not be

repeated individually.

2. The AES test names are unique, but knowing the next level in the hierarchy (the group) is often convenient.

3. The ACEC SSA (Single System Analysis) Report used for this document uses the same title for more than one
section; these sections were distinguished by listing the individual tests contained within the section when nec-
essary.

CMU/SEI-92-TR-32 203

Included raw data should be clearly distinguished from analysis text by size, font or
other means. For this report the OutputExample paragraph format was used which
uses indention and a reduced size, fixed-width font,

While more than one test can be included within the raw data subsections, it is assumed that the number

of entries will be relatively small. For now, no "sub-subsection" headings are contemplated.

Included below are examples of the heading for the most common benchmark suites used in preparing

this report:

PIWG Test Results:

This heading is used to identify output from the PIWG test suite.

EXAMPLE OF OUTPUT FONT. Allows 80 characters per line.

ACEC Test Results:

This heading is used to identify output from the ACEC test suite.

AES Test Results:

This heading is used to identify output from the AES test suite.

References

•<entry here>

The references section lists all supporting documentation used in the entry. Citations should be com-
plete enough to permit the reader to locate the resource. General format is:

AUTHOR(S); TITLE; (JOURNAL or BOOK or ORGANIZATION;) [VOLUME or PUBLISHER or RE-

PORT #;) (PAGES); DATE.

Each reference cited in the entry should be entered here, even if previously included in other entries. If
no other references have been cited, a single line with the word "none" should be used:

* none

204 CMU/SEI-92-TR-32

References
[ANSI] ANSI; The American National Standard for the Ada Programming Language;

American National Standards Institute, Inc.; 1430 Broadway, New York 10018;
1983.

[BSI] BSi Quality Assurance; Ada Evaluation Reader's Guide, Version 5.0; PO Box
375. Milton Keynes, MK14 6LL, United Kingdom; 1989.

[BMAC] Boeing Military Airplanes Company; Ada Compiler Evaluation Capability
(ACEC) Technical Operating Report (TOR) Reader's Guide; Document Num-
ber D500-12471-1, Release 2.0, April 24,1990.

(GEj General Electric Company: Software Standards and Procedures Manual for
the AN/BSY-2 SUBMARINE COMBAT SYSTEM; 77C950014-B; Contract No.
N00024-88-C-6150; CDRL Sequence No. B027-03-C1-002; D.L.D. No. DI-
MCCR-80001 1; Rev. B; 28 September 1990.

[Ichbiahj Ichbiah, Barnes, Firth, Woodger. Rationale for the Design of the Ada Program-
ming Language. United States Government, 1986.

[Motorola] Motorola; MC68030 Enhanced 32-Bit Microprocessor User's Manual, Second
Edition; Prentice Hall, Englewood Cliffs, NJ 07632; 1989.

[Squire] Squire, J.S. (editor), "Ada Numerics Standardization and Testing," Ada Letters,
opecial edition, Vol. XI, No 7, Fall 1991 (I).

[NASA] NASA SEAS (Systems, Engineering, and Analysis Support) Program Techni-
cal Note. NASA Goddard Space Flight Center, Flight Dynamics Division /
Code 552. April 10, 1990.

[VADScross-a] VADScross Verdix Ada Development System for Cross-Development Environ-
ments, Version 6.05; VAX VMS =, MC68020/30; User's Guide; Verdix Corpo-
ration; January 16, 1991.

[VADScross-b] VADScross Verdix Ada Development System for Cross-Development Environ-
ments, Version 6.05; VAX VMS =* MC68020/30; Programmer's Guide; Verdix
Corporation; January 16, 1991.

CMU/SEI-92-TR-32 205

206 CMUISEI-92-TR-32

Index digits (of a floating-point type) 157
discriminantcheck 25
division check 25

A
accesscheck 25
Ada Compiler Evaluation Capability (ACEC) 4, 195 E
Ada Evaluation System (AES) 4 entry call 177

Ada Evaluation System(AES) 195 queued 177
Ada Style Guide (BSY-2) 3, 181 enumeration 43
aggregate exception 47-54

array 7 propagation 47
record 165 raising 47

array 7-23 rendezvous 53
aggregate 7
Boolean 8, 69
packed 8, 21, 31 F
performance 13, 17, 31 fragmentation 38

attributes 43

G
B

generic

benchmarks code sharing 55, 56

Ada Compiler Evaluation Capability (ACEC) 4, procedures 55

195
Ada Evaluation System (AES) 4, 195
flawed implementation 157 indexcheck 25
inconsistent results 47 inlining 63
invalid results 92 generic 55, 59
Performance Issues Working Group (PIWG) 3,

196
Whetstone 159 L

Boolean arrays 7, 8 length_check 25
bounded buffer 176 logical tests 69-76
BSY-2 Software Standards and Procedures (SSP) loop 77-83

Manual 181 for 77
BSY-2 SSP Ada Style Guide 181 optimization 77

unrolled 77
while 77

C
checking, see run-time checking
code sharing 55, 56 M
compiler limits 85 MASCOT 169

module size 85-98

D
data location 31-41 O

array 7 optimization 99-156
record 31 loop 77

declarations, see data location overflowcheck 25
delay alternative 175

CMU/SEI-92-TR-32 207

P module 85-98
parameters, number of statements

procedure 88, 95 case 69
rendezvous 169 exit 77

Performance Issues Working Group (PIWG) goto 77
benchmarks 3, 196 it 69

performance questions 181-193 lo 69
BSY-2 SSP Ada Style Guide questions 181 loop 77
combined list of questions 187 ne 7
final questions list 192 storage check 25
format and instructions 197-204
SEI additional questions 183

performance reports 3-5 T
pragma task

inline 63 priority 175
optimize-code 100 rendezvous 169
passive 169 types
suppress 7, 26 enumeration 43
volatile 100 numeric 157-162

precision 157-162 private 163
extended 157 record 165-167
single 157 visible 163

private types 163
procedures

generic 55 V
inline 63 visible part 163
location 88
size 85-98

W
Whetstone benchmark 159

R
range check 25
record 165-167

aggregate 165
location 31

rendezvous 169-180
exception 53

reports

performance 3-5
representation clause 43
run-time checking 7, 25-29

array 21
suppression 25

S
selective wait 175
size

integer 160

208 CMU/SE[-92-TR-32

UNLIMT1D, UNCLASSIFIED
59OJRn aSSOXlCAQION am11 lOtG

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICITVE MARK1NGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release

2b. DECLASSIFICATION/DOWNGRADING SCIMDULE Distribution Unlimited

N/A
4. PERFORMING ORGANIZTION REPORT NUMBER(S) 5. MONITORING C RGANIZATION REPORT NUMBERt(S)

CM U/SEI-92-TR-32 ESC-TR-92-032

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7c NAME OF MON•TrORIN G ORGANIZATION

Software Engineering Institute (if applicable) SEi Joint Program Office
SEI

6c. ADDRESS (city, state. ard zip code) 7b. ADDRESS (city. statc, va mp code)

Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

Ua. NAME OFFUNDING/SPONSORING 'Sb. OFFICE SYMBOL '. PROCUREMENT INSTRUMENT IDENTIFICATION NUMB ER
ORGANIZATION (if pplicable) F1962890C0003

SE! Joint Program Office ESC/AVS

8c. ADDRESS (city. state. and zip code)) 10. SOURCE OF FUNDING NOS.

Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENTNO NO. NO NO.

63756E N/A N/A N/A
11 TITLE (Include Swity Classification)

Performance and Ada Style for the AN/BSY-2 Submarine Combat System
1I PERSONAL AUTHOR(S)

Neal Altman, Patrick Donohoe
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE 0OF REPORT (yamz mouth. day) IS. PAGE COUNT
Final •T FROM TO Decerter 1992 216
16. SUPPLEMIENTARY NOTATION

17, COSATI CODES , Ill. SUBJECT TERMS (corairme anrevaz o necesary and identify by block nwtiber)

FIELD GROUP SUB. GI. Verdix Ada Development System (VADS), benchmarking, AN/BSY-2,

'performance analysis, Ada coding, BSY-2

19. ABSTRACT (continue on mem if nhcesary and ideiny by blr'ck amber)

The performance of programs prepared with the Verdix Ada Development System (VADS) was mea-
sured and analyzed for programmers preparing a large Ada system. Using standard Ada benchmark
suites (ACEC, AES and PIWG) and a representative Motorola 68030 target system as a source of
data, questions were posed and answered about programming alternatives, based on the measured
performance of the compiler. The questions included in the report were abstracted from a much
larger set selected from an analysis of the BSY-2 Style Guide and augmented with additional ques-
tions suggested by SEI experience. The derivation of the questions and the template for the perfor-
mance analysis sections are presented as appendices.

(Please turn cm 0
20. DISTRIBUTION/AVAILABnJTY OF ABSTRACT 21. ABSTRACT SECUKfTY CLASSIIICATION
UNCtASSIFIEDUNIMrrTED SAME AS RPT [Tc USERS Unclassified, Unlimited Distribution

2a. NAME OF RESPONSIBLE INDIVIDUAL 22b,. TELFPONE NU"OER (include uar code) ZZ. OFFICE SYMBOL.
Tom Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SEI)

DD FORM 1473, $3 APR EDITION of I JAN 73 IS OBSOLETE ULIMITFD UNCIASSIFIED
StbMIrTY CIASSIFCATIO(OW: MIS

